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Abstract

Large operands exceeding the standard 32- or 64-bit register sizes of most mod-
ern CPUs are common in cryptography, scientific computing and other allied ar-
eas. Arithmetic operations like addition, subtraction, multiplication, division, mod-
ulo, and factorization are essential in this context. Scientific computing typically
employs commercial tools like Maxima or Mathematica, while cryptography relies
on optimized libraries such as GNU Multiple Precision Library (GMP) and BigInt.
However, despite their fine-tuned optimizations for most general-purpose proces-
sors, they underutilize modern CPU parallelization capabilities like SIMD (Single
Instruction, Multiple Data), possibly due to limited research on parallelizing core
arithmetic tasks.

In this work, we address this gap by focusing on three fundamental operations:
addition, subtraction, and multiplication of large integers. We propose a parallel ap-
proach for the addition and subtraction of these integers. Additionally, we introduce
a hybrid multiplication technique that incorporates the ancient Indian Vedic math-
ematics, Urdhva-Tiryagbhyam sutra, which is traditionally aimed at faster mental
multiplication. Using SIMD constructs, particularly the AVX512 intrinsics on an x86-
64 Intel Rocket Lake-based CPU, we achieve an average execution time speed-up of
2.06x for addition and 2.32x for subtraction in 99.99% of cases compared to GMP
on operand sizes ranging between 256 bits and 131072 bits. Even in the worst-case
scenarios, our performance remains competitive with GMP, resulting in an average
speed-up of 1.38x for addition and 1.49x for subtraction. Furthermore, compared
to GMP, we outperformed the existing works for large number addition and sub-
traction on x86-64-based CPUs. However, our implementation of the multiplica-
tion algorithm using the Vedic approach currently supports only fixed 256-bit-sized
operands, achieving a performance gain of 1.83 times in execution time over GMP.
Notably, none of the existing works utilizing the AVX512 intrinsics have been able
to outperform GMP for multiplications involving fewer than 1024-bit operands. Fu-
ture research will focus on completing the hybrid multiplication implementation for
variable-sized operands and fine-tuning the implementations for other architectures,
such as ARM and RISC-V, using their respective SIMD constructs.
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Chapter 1

Introduction

Large-number arithmetic, also known as arbitrary-precision or bignum arithmetic,
plays a fundamental role in the current context of cryptography [Hel79; RSA78;
Mil86; JMV01; Fre10; Erb+20], scientific computing [Bai05; BB15; BBB12], and vari-
ous mathematical software packages [Sag; Wol; Max; Inc22]. RSA encryption [RSA78],
for example, depends on the difficulty of factoring large primes for its security.
Blockchain technologies, such as Bitcoin and Ethereum, use elliptic curve cryptogra-
phy [Mil86] for securing transactions operating on large numbers. Scientific comput-
ing, including fields like astrophysics and particle physics [BB15], utilizes arbitrary-
precision arithmetic for calculations. These large-number or arbitrary-precision arith-
metic fundamentally require operations like addition, subtraction, multiplication,
division and factorization on numbers [Ski08; Knu97] spanning hundreds and thou-
sands of bits. However, working with large operands can significantly slow down
the overall performance of applications. For example, the performance of RSA en-
cryption varies exponentially with key size. Decrypting a 2048-bit RSA key takes
only a few milliseconds; however, when the key size is doubled to 4096 bits, the
time required can increase nearly fivefold on modern CPUs like the Intel i7 and Ap-
ple M1 [Cof]; additionally, generating key pairs can take almost ten times longer.
And as the size of the operands increases, the computation time grows exponen-
tially.

Current solutions for performing large-number arithmetic include commercial
computer algebra systems like Maxima [Max] and Mathematica [Wol], as well as
various libraries such as the GNU Multiple Precision Arithmetic Library (GMP)
[GNU91] and the GNU Multiple Precision Floating-Point Reliable library (MPFR)
[Pro] (based on GMP) in C/C++; gmpy2 [PYP] (based on GMP), mpmath [Joh], and
the built-in decimal module in Python; the built-in BigInteger [Docb] in Java; Apfloat
[Tom] in C++ and Java; the BigInt [Doca] in JavaScript; num-bigint [Docc] and rug
[Docd] (based on GMP and MPFR) in Rust; and various other libraries.

The GMP library [GNU91] is widely used for fast arithmetic computations on
large numbers and is highly optimized for most general-purpose processors, lever-
aging carefully tuned assembly routines. As a result, it serves as the foundation for
many other libraries supporting large-number and arbitrary precision arithmetic.
However, despite its optimizations, GMP is primarily designed for single-threaded
sequential execution and does not take into account modern hardware capabilities
for parallel computation, possibly due to limited work in parallelizing the large-
number arithmetic operations. We believe that incorporating parallel algorithms
with current hardware enhancements can significantly boost the performance.

Earlier works [Coo00; GK12; KM14; GK16] have tried to introduce parallelism
in large number multiplication to enhance performance, focusing on metrics like in-
struction count and CPU cycles. However, the actual performance improvements in
terms of execution time on modern hardware remain unclear, primarily due to the
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absence of upgraded SIMD features in the commercial CPUs available at that time.
Though some recent works [ET18; ET20; ET23] have introduced parallelism in this
context, testing on some recent real-time actual CPUs and measuring in terms of ex-
ecution time, they got performance improvements above 1024- to 3072-bit operand
sizes against the current optimized single-threaded implementation of GMP. On the
other hand, there’s very limited work done [Yee19; RSS23] on accelerating large-
number addition and subtraction, but hardly getting significant performance im-
provements as with multiplication. Parallelism in computing can be broadly cat-
egorized into two types: Task-level Parallelism and Data-level Parallelism [HP11].
Task-level parallelism can be achieved using multi-threading, where independent
tasks or operations are executed concurrently across multiple CPU cores. This ap-
proach can be beneficial for accelerating computation, but it also introduces bottle-
necks due to complex thread management and synchronization overhead [Lee06;
Asa+06; Pau]. Multi-threading is generally useful only beyond a certain data thresh-
old, as thread overhead can degrade performance instead of improving it; thus, a
few existing works [Sam22] noticed performance benefits only for abruptly large in-
tegers (ranging between 6.4× 106 to 6.4× 1010 bits). Data-level parallelism, on the
other hand, can be exploited using Single Instruction Multiple Data (SIMD) con-
structs on modern CPUs, where multiple data elements are processed simultane-
ously within a single instruction cycle. SIMD-based methods can achieve significant
performance improvements, especially with larger vector register sizes (typically
256 bits and above), when used with parallel algorithms. However, suitable parallel
algorithms have not been explored extensively for large-number arithmetic.

1.1 Problem Statement

Our focus in this work is to design, implement and optimize algorithms for large-
number arithmetic using data-level parallelism, specifically through the use of SIMD
constructs with x86-64 AVX512 intrinsics [Int24]. We target three fundamental arith-
metic operations on large integers: addition, subtraction and multiplication.

More formally,
Input description: Given two large integers, x and y,
Problem description: Design high-performance AVX512-based parallel methods

to compute x + y, x− y, and x× y, minimizing each operation’s computation time.

Further, we would like to compare the performance of these implementations
against the widely used GMP library to assess improvements in execution speed,
as GMP leverages highly optimized single-threaded assembly routines for addition,
subtraction and multiplication and has not currently utilized SIMD for them [SIM].

1.1.1 Optimizing Arithmetic Operations

To address the problem statement, we have examined existing strategies for par-
allelizing the arithmetic operations on large numbers. We have restructured and
refined some of the existing works for better performance for large integers. Ad-
ditionally, we explored the use of Vedic mathematics, an ancient Indian system of
mathematical techniques that offers methods for performing arithmetic operations
such as multiplication, division, quotient, and factorization. Vedic mathematical ap-
proaches are typically designed for efficient mental calculations; therefore, they are
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often parallelizable. However, they have not been explored for parallel implemen-
tations in large-number arithmetic.

Challenges: The fundamental arithmetic operations, addition and subtraction, are
inherently not parallelizable due to carry and borrow dependency; as a result, they
are usually implemented sequentially. Thus, it is hard to utilize parallelism for ad-
dition and subtraction. However, keeping in mind the applications of large-number
arithmetic being predominantly random numbers, such as for cryptography, we
have tried to tweak the existing addition and subtraction techniques [Yee19; KS73]
for faster parallel execution using SIMD constructs. On the other hand, large-number
multiplications are typically implemented using various divide-and-conquer strate-
gies [Kar63; Too63; CA69; SS71] for a smaller number of multiplications to be per-
formed, and as a result, it is harder to compute them in parallel using SIMD con-
structs. However, existing works tried to leverage SIMD constructs for smaller-sized
base-case multiplication utilizing a typical grade-school multiplication technique
[Knu97]. In this work, we have utilized the Urdhva Tiryagbhyam sutra [MAH92]
for the base-case multiplication instead of the grade-school technique, as it is more
loosely coupled in nature.

Contributions: In this work, we have made the following key contributions:

• Proposed an improved addition and subtraction technique for large numbers,
enabling parallel computations in most cases.

• Proposed a hybrid divide-and-conquer method incorporating the Urdhva Tir-
yagbhyam technique from Vedic Mathematics as base-case for large-number
multiplication.

• Implemented the proposed addition and subtraction using AVX512 intrinsics,
achieving an average execution time speed-up of 2.06× and 2.32× over the
GNU Multiple Precision (GMP) library for operand sizes ranging from 256 to
1,31,072 bits on an Intel Rocket Lake-based CPU.

• Implemented the proposed base-case Vedic-based multiplication using AVX512
for fixed 256-bit operands and achieved a 1.83x execution time speed-up com-
pared to GMP on the same Intel CPU.

• Additionally, introduced an approximate version of our addition and sub-
traction approach, which further enhances performance, achieving an average
speed-up of 2.52× for addition and 2.80× for subtraction compared to GMP.

Organization of the Thesis: Chapter 2 provides background information and re-
views related literature. Chapter 3 introduces the proposed technique for large num-
ber addition, including its implementation details and observations. Following this,
Chapter 4 discusses the proposed techniques for large number subtraction, along
with the implementation and observations. In Chapter 5, we present approximate
variants of the proposed addition and subtraction approaches. The hybrid technique
that incorporates Vedic mathematics for large integer multiplication is described in
Chapter 6, along with the implementation and performance observations of this
Vedic approach. Chapter 7 offers an overall discussion of the three operations, ad-
dressing the limitations and challenges encountered. Finally, Chapter 8 concludes
the work.
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Chapter 2

Background & Related Works

2.1 Large Numbers

Typical programming languages like C, C++, Java, and JavaScript have native sup-
port for variables ranging from 8-bit to 64-bit (equivalent to storing 2 hex-digits to
16 hex-digits), depending on the versions and the architecture. However, many real-
world applications, particularly cryptography and scientific computing, may require
numbers exceeding these 64-bit limits.

In this context, "large numbers" refer to values beyond the standard 64-bit-and-
beyond capabilities of common programming languages required for arbitrary pre-
cision. As outlined in Problem Statement 1.1, our focus is on performing arithmetic
operations on these large, randomly generated numbers as fast as possible, keeping
in mind the application needs.

Use Cases: Classical cryptographic applications like Elliptic Curve Cryptogra-
phy (ECC) [Mil86] typically operate on 256-bits to 521-bits [IBM], RSA [RSA78] cur-
rently utilizes operand sizes ranging between 2048 to 3072 bits [Teab; Hou], Diffie-
Hellman Key Exchange [DH22] is currently recommended between 2048-bit to 3072-
bit [Bar20]. However, the rise of quantum computing necessitates post-quantum
cryptography (PQC) [BL17], which relies on significantly larger key sizes to ensure
security against quantum attacks. For example, CRYSTALS-Kyber [Bos+18] (Key
Encapsulation Mechanism) requires public keys roughly equivalent to 6144 to 12544
bits [Ala+22], CRYSTALS-Dilithium [Lyu+20] (Digital Signature) uses public keys
equivalent to approximately 8704 to 20736 bits, and signatures equivalent to 16384
to 36760 bits [Ala+22], Falcon [Fou+18] (Digital Signature), a lattice-based signature,
has public keys of roughly 7176 to 14936 bits and signatures of 5328 to 9832 bits
[Ala+22], SPHINCS+ [Ber+15] (Digital Signature) exhibits signature sizes ranging
from 62848 to 398848 bits, and public keys of 256 or 512 bits [Ala+22].

These necessitate the need to speed up the fundamental arithmetic operations
like addition, subtraction, and multiplication for better performance with the us-
age of current hardware enhancements, as working with such large numbers can be
time-consuming; even small performance gains would be for the greater good.

2.1.1 Large Number Representation

Typical cryptographic arithmetic libraries, such as GMP, adopt a limb-based repre-
sentation for managing large integers. A limb is a fixed-size unit, typically a 32-bit
or 64-bit unsigned integer, often matching the machine word size that stores a por-
tion of the number. Multiple limbs collectively represent the full integer, stored as
a contiguous array for large numbers or as a set of registers for smaller ones. The
base used for limb representation determines the number of bits that can be stored
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within each limb. Ideally, while distributing the large numbers across 32- or 64-bit
limbs, one would use 232 or 264 as its base for minimizing the number of limbs (i.e. if
any library is utilizing hex numbers, 32-bit can hold eight hex-digits, and 64-bit can
hold 16 hex-digits, effectively making the base for the whole limb as 232 or 264).

However, certain cryptographic implementations, such as those used for ellip-
tic curve cryptography (ECC), benefit from using bases other than 232 or 264. This
leads to an unsaturated representation, also called reduced-radix, where some bits
within each limb remain unused. For instance, implementations of the P-256 el-
liptic curve often utilize unsaturated limbs. Conversely, saturated representations, or
native-radix, utilize all available bits within each limb [RSS23]. The work by Erbsen
et al. [Erb+20] highlights these unsaturated implementations and, for their imple-
mentation for ECC, they utilize unsaturated limbs. The work also highlights that
certain representations, such as Curve25519 [Ber06], utilize mixed-radix bases. In-
stead of all limbs having a fixed number of bits utilized, also known as uniform-radix
base, we may have an alternate pattern of bits utilized. For e.g. base 225.5 for 32-bit
Curve25519 contains 26 bits in the first limb, 25 bits in the second, 26 bits in the third,
and so on. This kind of unorthodox base sometimes helps for faster performance.
As highlighted by Ersben et al. [Erb+20], modular reduction by 2255 − 19 is fastest
when the 255th bit of a large number aligns with the first bit of a limb. In a saturated
implementation, limb boundaries align with multiples of the integer size (e.g., a 64-
bit saturated representation places boundaries at bits 0, 64, 128, etc.). However, in
an unsaturated implementation with an unconventional base like 225.5, limb bound-
aries occur at bits 0, 26, 51, 77, ... and 255. The significant speed boost in modular
reduction justifies using a little extra memory to store each large number.

In our work, we have opted for 64-bit limbs to match the machine word size of
modern CPUs (x86-64 based). While our addition, subtraction, and multiplication
algorithms are designed to be independent of limb size and limb saturation, for ad-
dition and subtraction, we have employed saturated and uniform representation,
utilizing all the 64-bits with an effective base of 264. However, for multiplication, we
have used a 52-bit unsaturated and uniform representation, with an effective base
of 252, to accelerate our multiplication implementation, which we have discussed in
the implementation section of Chapter 6.

2.2 Addition

2.2.1 Carry Propagate Addition

A method for performing addition is through digit-by-digit carry propagation. In
large-number additions, the two numbers to be added may typically contain up to
16,384 hex digits if we’re handling 65,536-bit numbers. If we process each digit at
once, as depicted in eq. 2.1 [Knu97], that will result in 16,384 additions between two
operands and 16,383 carry propagations (ignoring the initial carry).

Si = Ai + Bi + Ci−1, (2.1)

Ci =

{
1, if Si ≥ Bmax,
0, otherwise.

(2.2)

In the above equations, Si denotes the intermediate sum at position i, computed
by adding the corresponding digits Ai and Bi along with the carry from the previous
position, Ci−1. The carry for the next position, Ci, is set to 1 if the intermediate sum
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exceeds or equals the base limit Bmax; otherwise, it remains 0. Here, Bmax represents
the numerical base limit (e.g., 16 for hex digits).

But, most library implementations [GNU91; Docd; PYP; Docb] pack multiple
digits together in a single limb instead of just a bit or digit, be it saturated or unsatu-
rated, i.e., instead of treating each hex digit separately, we can combine multiple hex
digits into a larger group, thereby reducing the number of required operations.

Example 2.2.1.1.
Consider the addition of two eight-digit hexadecimal numbers:

A = 7F93BC2D, B = 4E87A9F6.

We perform the digit-wise addition from right to left:

7 F 9 3 B C 2 D
+ 4 E 8 7 A 9 F 6

B 1D 11 A 15 15 1 13

Since we are working in base 16, any sum Si ≥ 0xF generates a carry. Extracting the
individual carries:

B D 1 A 5 5 1 3
C : 0 1 1 0 1 1 1 1

Here, each carry only affects its preceding digit. However, if we group the digits into
two groups of four digits each, we reduce the carry propagations, as we only need to
propagate just two carry instead of seven:

7F93 BC2D
+ 4E87 A9F6

CE1A 16623
C : 0 1

The carry from the right group (16613) only affects the left group if the sum exceeds four
hex digits (i.e., Si > 0xFFFF). This method localizes carry propagation within smaller
groups, reducing the total number of carry propagations. The more digits are grouped
together, the fewer additions and carry propagations.

Modern computer Instruction Set Architectures (ISA) are typically designed to
process data in 32-bit or 64-bit format. For instance, a 32-bit limb can represent values
up to 0xFFFFFFFF. This allows us to combine eight consecutive hex digits into
one 32-bit limb, and carry propagation within the limb is handled by the hardware
adders themselves; we only need to account for carry if the sum overflows. This
approach will reduce the number of arithmetic operations required as more digits
are processed in each operation, thereby improving computational performance. For
example, by grouping the digits into 32-bit limbs, the 16,384 hex-digit number is
represented using only 2,048 limbs. So, now, we can perform the addition of the two
16384 hex-digit numbers with just 2048 additions and 2047 carry propagations.

Almost all libraries, including GMP, utilize the carry-propagation addition algo-
rithm mentioned in eq. 2.1, sequentially propagating the carry for each subsequent
limb addition. However, this sequential carry propagation is a major issue in terms
of parallelizing the additions.

2.2.2 Carry Select Addition

In the carry propagation method, the current addition must wait for the previous
addition to finish generating its carry, causing a delay. To address this issue, carry
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select addition [Bed62] was introduced, primarily in the circuits. Carry-select addi-
tion addresses this by pre-computing two possible results for each digit, covering
both scenarios for the incoming carry Ci−1, which can be either 0 or 1:

• If there’s no carry-in (Ci−1 = 0):

– Sum: S(0)
i = (Ai + Bi) mod Bmax,

– Carry-out: C(0)
i+1 = (Ai + Bi)/Bmax,

• If there’s a carry-in (Ci−1 = 1):

– Sum: S(1)
i = (Ai + Bi + 1) mod Bmax,

– Carry-out: C(1)
i+1 = (Ai + Bi + 1)/Bmax.

Once the actual Ci−1 from the previous digit is known, the correct sum and carry-out
are selected:

Si = S(Ci−1)
i , Ci+1 = C(Ci−1)

i+1 . (2.3)

By pre-computing both outcomes in advance, this approach avoids waiting for the
carry to propagate, primarily in the hardware circuits. However, it incurs double the
cost due to computing two possibilities for software implementation and computing
them in parallel using multi-threading may incur overhead costs. Nonetheless, a
long-chained dependency may still persist for software implementation to select the
correct sums and carry-outs from the least to the most significant digit, limiting full
parallelization.

2.3 Subtraction

Subtraction is similar to addition; instead of propagating carries, we generate bor-
rows. We can tweak the carry propagation equation (Eq. 2.1) for subtraction as de-
picted in Eq. 2.4.

Di = Xi −Yi − Bi−1, (2.4)

Bi =

{
1, if Xi −Yi − Bi−1 < 0,
0, otherwise.

(2.5)

This still causes the same long-chained dependency as for carry-propagation addi-
tion. Similarly, the borrow-select subtraction tackles the waiting dependency of the
previous borrow to be generated by pre-computing two possible results for each
digit, covering both scenarios for the incoming borrow Bi−1, which can be either 0
or 1:

• If there’s no borrow-in (Bi−1 = 0):

– Difference: D(0)
i = (Xi −Yi) mod Bmax,

– Borrow-out: B(0)
i =

{
1, if Xi −Yi < 0,
0, otherwise,

,

• If there’s a borrow-in (Bi−1 = 1):

– Difference: D(1)
i = (Xi −Yi − 1) mod Bmax,

– Borrow-out: B(1)
i =

{
1, if Xi −Yi − 1 < 0,
0, otherwise,

.
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2.4 Multiplication

Performing multiplication on large numbers is computationally heavier than addi-
tion or subtraction, as it incurs many more computations. Popularly, there are two
approaches for computing multiplication: the simple school-book technique and
divide-and-conquer-based strategies. Other approaches are not very practical for
our targeted operand sizes. The following subsections discuss them in detail.

2.4.1 Grade-school

Grade school multiplication [Knu97], sometimes called schoolbook or grammar school
multiplication, is the basic and conventional method of multiplying numbers by ar-
ranging a rectangle of cross-products. It’s exactly like the long multiplication we do
with pencil and paper.

Example 2.4.1.1.
23
×45
115
92

1035

The grade-school multiplication technique for X×Y is described as follows. Let
X have n digits (X0, X1, . . . , Xn−1) and Y have m digits (Y0, Y1, . . . , Ym−1), in base B (e.g.,
B = 10 for decimal). For each position k = 0, 1, . . . , n + m− 1:

1. Compute the sum at position k:

Sk = ∑
i,j

i+j=k

Xi ·Yj + Ck−1,

where C−1 = 0 initially.

2. Compute the carry to the next position:

Ck = ⌊Sk/B⌋,

3. Compute the digit at position k:

Pk = Sk mod B.

The final product is P = P0P1 · · · Pn+m−1, where:

• Sk: Sum at position k,

• Ck: Carry to position k + 1,

• Pk: Digit at position k.

Although this method has a time complexity of O(n · m), where n and m rep-
resent the sizes of the operands, it is still the preferred choice in many libraries and
implementations (e.g., [GNU91; Docc; Docb; ET20; ET23]) for smaller large numbers.
Faster divide-and-conquer strategies, despite having better time complexity, suffer
from performance degradation when dealing with moderately sized numbers. As a
result, this technique proves to be more practical in those cases. Notably, GMP ver-
sion 6.3.0 typically uses the grade-school multiplication method for smaller numbers
and adopts divide-and-conquer strategies for larger numbers.
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2.4.2 Divide-and-Conquer Multiplication Strategies

Karatsuba

The Karatsuba multiplication algorithm, as described in Knuth’s book [Knu97], em-
ploys a divide-and-conquer strategy for multiplying two large numbers, X and Y.
The algorithm recursively splits each number into two halves of equal length: X
is divided into XH (the high-order half) and XL (the low-order half), while Y is di-
vided into YH (the high-order half) and YL (the low-order half). In contrast to the
traditional grade-school method, which requires four multiplications at each recur-
sive step (specifically, XH × YH, XH × YL, XL × YH, and XL × YL), the Karatsuba
algorithm reduces the total to just three multiplications: XH × YH, XL × YL, and
(XH + XL)× (YH + YL). This optimization effectively saves one multiplication for
each recursive step. The algorithm then combines these results with less costly com-
putations, as outlined next.

The Karatsuba approach can be expressed as follows for two n-digit numbers X
and Y, where n is assumed to be a power of 2 for simplicity:

• Split X = XH · Bn/2 + XL and Y = YH · Bn/2 +YL, where B is the base (e.g., B = 16 for
hexadecimal), and n/2 is the split point.

• Compute three recursive products:

1. P1 = XH ×YH ,

2. P2 = XL ×YL,

3. P3 = (XH + XL)× (YH + YL).

• Combine results: X×Y = P1 · Bn + (P3 − P1 − P2) · Bn/2 + P2.

The base case occurs when n = 1, where X and Y are single digits, and the
multiplication is direct (i.e., X×Y).

To save up some operations like carry-overflows while performing the addition
for (XH + XL)× (YH +YL), GMP utilizes subtraction instead of addition, like (XH −
XL)× (YH −YL). Their strategy [Kar] is depicted below:

For two N-limb numbers X and Y (where N is even for simplicity):

• Define k = N/2, and set b = 2k·bits_per_limb, where bits_per_limb is 64 on x86_64 CPUs.

• Split X = X1 · b + X0 and Y = Y1 · b + Y0, where X0, X1, Y0, Y1 are k-limb numbers.

• Compute three recursive products:

1. P1 = X1 ×Y1,

2. P2 = X0 ×Y0,

3. P3 = (X1 − X0)× (Y1 −Y0) (noting that if X1 < X0 or Y1 < Y0, the result may be
negative).

• Combine results:
X ·Y = (b2 + b) · P1 − b · P3 + (b + 1) · P2 (2.6)

• Base case: If N = θ, perform grade-school multiplication.

Karatsuba’s time-complexity is O(n1.585)), as on each halved-recursion, it performs
three multiplications (O(nlog23). For most modern CPUs, GMP utilizes Karatsuba for
equal-length operands with a number of limbs between 20 and 130.
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Toom-Cook

Toom-Cook multiplication [Too63; CA69; Knu97] is more of a generalized approach
of Karatsuba [Kar63]. Instead of splitting the number into two equal lengths, Toom
multiplications splits them into n halves; typically, three and four halves are the most
popular ones.

Toom-3 Way For two N-limb numbers X and Y, Toom-3 [Too] splits them into three
parts as follows:

• Represent X and Y as:
X = [x2 | x1 | x0],
Y = [y2 | y1 | y0],

where x0, x1, y0, y1 are k-limb pieces (roughly N/3 limbs each), and x2, y2 may be 1 or
2 limbs shorter.

• Express X = X(b) and Y = Y(b) as polynomials:

X(t) = x2t2 + x1t + x0, Y(t) = y2t2 + y1t + y0

The product X · Y = W(b), where W(t) = X(t) · Y(t) = w4t4 + w3t3 + w2t2 + w1t + w0.
The coefficients wi (each roughly b2 in size) are determined by evaluating W(t) at five points
and then solving a system of equations. The final result is:

W(b) = w4b4 + w3b3 + w2b2 + w1b + w0

The algorithm proceeds as follows:

1. Split Operands: Divide X and Y into [x2, x1, x0] and [y2, y1, y0], with k ≈ N/3 limbs
per part (adjusting for x2, y2).

2. Evaluate at Five Points: Compute W(t) = X(t) ·Y(t) at:

• t = 0: W(0) = x0 · y0 = w0,

• t = 1: W(1) = (x2 + x1 + x0) · (y2 + y1 + y0),

• t = −1: W(−1) = (x2 − x1 + x0) · (y2 − y1 + y0) (use absolute values and track
sign if negative),

• t = 2: W(2) = (4x2 + 2x1 + x0) · (4y2 + 2y1 + y0),

• t = ∞: W(∞) = x2 · y2 = w4 (limit as t→ ∞, effectively X(t) ·Y(t)/t4).

3. Form Linear System: Substitute the points into W(t):

W(0) = w0,
W(1) = w4 + w3 + w2 + w1 + w0,

W(−1) = w4 − w3 + w2 − w1 + w0,
W(2) = 16w4 + 8w3 + 4w2 + 2w1 + w0,

W(∞) = w4.

4. Solve for Coefficients: Solve the system:

• w0 = W(0),

• w4 = W(∞),

• w1 = W(1)−W(−1)−2w4
2 ,

• w3 = W(1)+W(−1)−2w0−2w4
2 ,

• w2 = W(2)−16w4−8w3−2w1−w0
4 .
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5. Combine: Compute X ·Y = w4b4 + w3b3 + w2b2 + w1b + w0.

This requires five multiplications of roughly N/3-limb numbers, compared to
nine in a base-case approach, offering time-complexity O(nlog35) ∼ O(N1.465).

Toom-4 Way As the name suggests, Toom-4 splits up the operands into four similar-
length parts:

X = [x3 | x2 | x1 | x0],
Y = [y3 | y2 | y1 | y0],

And, in a similar fashion to Toom-3, it computes the product, but with a time-
complexity of O(nlog47), as it performs seven multiplications in total for the four
splits, effectively performing in O(n1.404).

The higher degree Toom-n takes more pieces, resulting in fewer multiplications
compared to the grade-school technique, dropping the time complexity from O(n2)
to something like O(nlogn(2n−1)). GMP 6.3.0 uses versions like Toom-3 (3 pieces),
Toom-4 (4 pieces), and even Toom-6’n’half or Toom-8’n’half for larger numbers. For
reference, Toom-2 (which is equivalent to the Karatsuba method) starts at 19 limbs,
Toom-3 at 125 limbs, Toom-4 at 196 limbs, Toom-6’n’half at 276 limbs, and Toom-
8’n’half at 369 limbs for AMD Zen 2 architecture.

2.4.3 Fast Fourier Transformation

The idea of using the Fast Fourier Transform (FFT) for multiplication got its start
with Schönhage and Strassen in 1971 [SS71], who used FFT to multiply huge inte-
gers in O(n log n) time, even faster than Toom-n. Details of FFT multiplication are
not mentioned in this work. But for instance, for FFT multiplication, GMP han-
dles the product as x · y mod 2N + 1, splitting numbers into 2k pieces of N/2k-bit
chunks. This requires 2k pointwise multiplications, dropping the time complexity
to O(nk/(k−1)) for a modular result. Padding with zeros gives the full product, and
GMP picks k based on size: k = 4 kicks in around 300–1000 limbs, while k = 8 takes
over at 3000–10000 limbs for full products on modern CPUs.

2.5 Vedic Mathematics

Vedic Maths is an ancient Indian system of mathematical principles and techniques
that evolved in India about 5,000 years ago. It was rediscovered by Indian mathe-
matician Jagadguru Shri Bharati Krishna Tirthaji and later documented in his writ-
ings [MAH92]. The system is rooted in the ancient scriptures of India, known as
the Vedas, and comprises 16 sutras (formulas) and 13 sub-sutras (corollaries). The
formulae and their application are known for solving complex arithmetical oper-
ations mentally. The thirteen sub-sutras and corollaries are based on the primary
sixteen sutras; specifics are not listed here. For our work, we have found the Urdhva-
Tiryagbhyam sutra, the third sutra, ideal for multiplication, which we will discuss
next. A summary of the sixteen sutras is mentioned in table 2.1.
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No. Sutra Usage
1 Ekadhikena Purvena “by one more than the previous one” for efficient

multiplication or division by 2, and many more
arithmetic operations.

2 Nikhilam Navatascaramam Dasatah “all from 9 and the last from 10” for multiplication
and division, especially near powers of 10.

3 Urdhva-Tiryagbhyam “vertically and crosswise” techniques for multipli-
cation, argumental division, and straight division.

4 Paravartya Yojayet “transpose and apply” for division, simple equa-
tions, mergers, multiple simultaneous equations, si-
multaneous quadratic equations, and partial frac-
tions.

5 Sunyam Samyasamuccaye “when the samuccaya is the same, it is zero” for
solving simple and quadratic equations.

6 (Anurupye) Sunyamanyat “if one is in ratio, the other is zero” for solving si-
multaneous simple equations, quadratic equations,
and simultaneous quadratic equations.

7 Sankalana-vyavakalanabhyam “by addition and by subtraction” to solve simulta-
neous linear equations.

8 Puranapuranabhyam “by the completion or non-completion” for cubic
and biquadratic equations.

9 Calana-kalanabhyam “sequential motion” (specific applications not fully
listed).

10 Yavadunam “whatever the deficiency” for squaring, cubing,
square roots, and cube roots.

11 Vyastisamastih “specific and general” for solving biquadratic and
multiple simultaneous equations.

12 Sesanyankena Caramena “remainder by the last digit” for quotient-digit com-
putations.

13 Sopantyadvayamantyam “the ultimate and twice the penultimate” for miscel-
laneous simple equations.

14 Ekanyunena Purvena “by one less than the previous one” (specific appli-
cations not fully listed).

15 Gunitasamuccayah “the product of the sum” (specific applications not
fully listed).

16 Gunakasamuccayah To solve differential calculus through “the factor of
the sum.”

TABLE 2.1: Summary of the Sixteen Vedic Sutras
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2.5.1 Urdhva-Tiryagbhyam Sutra for Multiplication

Urdhva-Tiryagbhyam Sutra, also known as Urdhva-Tiryak Sutra, as mentioned in
chapter 3 of the book [MAH92], is a generalized multiplication formula that applies
to all cases of multiplication and is also useful for the division of two large numbers.
The sutra basically simplifies to “vertically and cross-wise”. It divides the large integer
multiplication into multiple sets of short and simple multiplications.

Example 2.5.1.1.
An instance is shown below for multiplying using the Urdhva-Tiryagbhyam technique:

29
×36

Step 1: First, we take the most significant digit of both operands, then take two digits from
the most significant position, and then take the least significant digit of both operands.
Basically, creating prefix and suffix sets from left to right.

2 29 9
3 36 6

Step 2: Next, we cross-multiply the individual digits within each set that we formed in
Step 1 and add the partial products within each such set.

(2 × 3), (2 × 6) + (9 × 3), (9 × 6)

Step 3: After Step 2, if the partial sums are greater than 9, we carry over the extra digits
from right to left partial sums (i.e. from least significant set to most significant set). This
step is also known as suddhikaran. In this case,

(6), (39), (54)

Next, we will propagate 5 from the right-most-hand-set and add it to the middle set, then
from the middle set and so on.

(6), (39+5), (4)
(6), (44), (4)

(6+4), (4), (4)
(10), (4), (4)

Now, as the left-most-hand number is greater than 9 (as we are working with base 10),
we’ll create one extra digit.

(1), (0), (4), (4)

Hence, the answer for the multiplication is 1044.
We take another example of three digits:

873
×234

Applying Step 1, forming the prefix and suffix sets.

8 87 873 73 3
2 23 234 34 4

Next, we cross-multiply the individual digits within each set as in Step 3.

(8× 2), (8× 3) + (7× 2), (8× 4) + (7× 3) + (3× 2), (7× 4) + (3× 3), (3× 4)
(16), (24+14), (32+21+6), (28+9), (12)
(16), (38), (59), (37), (12)
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FIGURE 2.1: Urdhva-Tiryagbhyam Multiplications (set-wise) [Upa]

We then carry over extra digits from right to left:

(16), (38), (59), (37+1), (2)
(16), (38), (59+3), (8), (2)
(16), (38+6), (2), (8), (2)

(16+4), (4), (2), (8), (2)

(2), (0), (4), (2), (8), (2)

Thus, the result is 204282.

Figure 2.1 simplifies the multiplications to be performed; each color represents
the multiplications within a set. Most practitioners of Vedic Mathematics often find
the steps straightforward enough, with some practice, to perform all calculations
for large multiplications mentally in just a few seconds. We have formalized the al-
gorithm for Urdhva-Tiryagbhyam multiplication and have provided a detailed de-
scription here, Algorithm 1.

Example 2.5.1.2.
To compare the grade-school and Urdhva-Tiryagbhyam multiplication methods, let’s look
at multiplying 843 by 384.

Grade-School Multiplication: 843 × 384

843
×384
3372

6744
2529
323712

Note: in the context of large numbers, multiplications like 843× 4 can’t be per-
formed directly, as the size of the multiplicand 843 can be more than the native
limb size of a machine. Hence, we need to break the multiplicand into small parts
and add the partial products to form the resultant product. The operation count
below assumes breaking up the multiplicand into individual digits; in order to
form the partial multiplication result, we need to propagate the carries.
Operation counts:

• Multiplications: 3× 3 = 9 (each digit of 843 multiplied by each digit of 372)

• Carry additions during multiplication: 2 + 2 + 2 = 6

• Column-wise additions: 1 + 2 + 2 + 1 = 6

• Column-wise carry additions: 1 + 1 + 1 + 1 = 4

Generalized Form:

• Multiplications: n× n = n2



2.5. Vedic Mathematics 15

• Carry additions inside digit multiplications: n× (n− 1)

• Column-wise additions: ∑n−1
i=0 i + ∑n−1

i=0 i = n× (n− 1)

• Column-wise carry additions: 2n− 1

Urdhva-Tiryagbhyam Multiplication: 843 × 384

843
×384

Digit Sets:

• For 843: 8, 84, 843, 43, 3

• For 384: 3, 38, 384, 84, 4

Cross-Products:

8× 3 = 24,
(8× 8) + (4× 3) = 64 + 12 = 76,

(8× 4) + (4× 8) + (3× 3) = 32 + 32 + 9 = 73,
(4× 4) + (3× 8) = 16 + 24 = 40,

3× 4 = 12.

Partial Products:
[24, 76, 73, 40, 12]

After suddhikaran (Carry Propagation):

2, carry 1,
40 + 1 = 41⇒ 1, carry 4,
73 + 4 = 77⇒ 7, carry 7,
76 + 7 = 83⇒ 3, carry 8,
24 + 8 = 32⇒ 2, carry 3,

3 (new digit)

Final Result:
[3, 1, 3, 7, 1, 2] = 323712

For additions within the sets, we have assumed the adder can perform two two-digit
operand additions at a time, and some additions may produce results of three digits,
which can be accounted for later by checking the wrap-around of the result (e.g. 81+64+49
would produce results of three digits).
Operation Counts:

• Multiplications: 1 + 2 + 3 + 2 + 1 = 9

• Additions within sets: 0 + 1 + 2 + 1 + 0 = 4

• Carry-Additions during suddhikaran: 4

Generalized Form:

• Multiplications: n× n = n2

• Additions within sets: ∑n−1
i=0 i + ∑n−2

i=0 i = (n− 1)2

• Carry-Additions during suddhikaran: 2n− 1
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Algorithm 1: Urdhva-Tiryagbhyam Multiplication
Input : Two n-digit numbers X and Y in base 10.
Output: Product P = X×Y.

// Step 1: Form prefix sets for both numbers
for len← 1 to n do

Form prefix set PX,len from X with length len;
Form prefix set PY,len from Y with length len; // E.g., for 873: prefix sets
are 8, 87, 873

// Step 2: Form suffix sets for both numbers
for len← n− 1 to 1 do

Form suffix set SX,len from X with length len;
Form suffix set SY,len from Y with length len; // E.g., for 873: suffix sets
are 73, 3

// Step 3: Merge prefix and suffix sets into merged sets
MX ← [PX,1, . . . , PX,n, SX,n−1, . . . , SX,1], MY ← [PY,1, . . . , PY,n, SY,n−1, . . . , SY,1];
// E.g., for 873: MX = [8, 87, 873, 73, 3]

// Step 4: Compute cross-products for each pair of merged sets
for i← 1 to 2n− 1 do

Ri ← 0;
indexX ← 0;
indexY ← length of MY,i − 1;
// Multiply and add from both ends moving inward
while indexX < length of MX,i and indexY ≥ 0 do

Ri ← Ri + (MX,i[indexX ]×MY,i[indexY]);
indexX ← indexX + 1;
indexY ← indexY − 1;

// Step 5: Perform suddhikaran (carry-over extra digits)
carry← 0;
for i← (2n− 1) to 1 (right to left) do

Ri ← Ri + carry;
if Ri ≥ 10 then

carry← ⌊Ri/10⌋;
Ri ← Ri mod 10;

else
carry← 0;

if carry > 0 then
Prepend carry as an extra digit to the result;

// Step 6: Combine digits to form the final product
Combine digits in R to form the product P;
return P;

Operation Count Summary for n-Digit Numbers: The table 2.2 summarizes the
number of operations required for multiplying two n-digit numbers. Effectively, the
time complexity for Urdhva-Tiryagbhyam is O(n2) as it performs n2 multiplications.
But, if we disregard the additional carries during partial product addition of the
grade-school, the Urdhva-Tiryagbhyam method minimizes operations, requiring (n-
1) fewer additions than grade-school multiplication. Both algorithms are slower in
terms of time complexity as compared to the divide-and-conquer methods that we
have seen, but for not-so-large numbers, implementation-wise, they are typically
faster due to the overhead cost of recursion.

As the Urdhva-Tiryagbhyam method natively breaks large numbers into smaller
sets of individual digit multiplications (loosely coupled), it’s much more effective
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Operation Grade-School Urdhva-Tiryagbhyam
MUL n2 n2

ADD n(n− 1) (n− 1)2

Carry-ADD 2n− 1 2n− 1
Extra-Carry-ADD n× (n− 1) 0

TABLE 2.2: Operation counts for grade-school and Urdhva-
Tiryagbhyam multiplication of two n-digit numbers.

for large numbers and was popular among practitioners from ancient times for the
mental multiplication of large numbers.

Usage of Viniculum Since Vedic Mathematics is intended for faster mental mathe-
matics, we typically use the Viniculum technique for multiplying digits greater than
5. The Viniculum is similar to finding the 9’s complement of a number. After ap-
plying the Vinculum to the operands, we multiply the digits as usual, but with the
advantage that all digits are reduced to less than 6, making them easier to compute
mentally. Afterwards, we convert the intermediate result back to its original form by
applying the vinculum again, effectively normalizing it. Although this method can
be faster for mental computation, depending on the numbers involved, it may not
offer advantages when implemented in a computer program, as hardware circuits
remain unaffected, as all the values stay within a given base. Consequently, it might
not be relevant to our work.

2.6 Related Works on Parallel Arithmetic for Large Numbers

2.6.1 Addition and Subtraction

The task of parallelizing the addition operation remains challenging due to the di-
rect dependency of carry in subsequent digit additions when adding two numbers.
As a typical carry-propagation addition algorithm computes carry Ci for ith place
after the successful calculation of Si−1, which again depends upon Ci−1 (as depicted
in Eq. 2.1), thereby creating a carry propagation dependency. This dependency may
create performance bottlenecks, as each digit addition must wait for the previous
carry to be generated before proceeding, which is not at all ideal for parallelizing the
add operations. The alternative approach of carry-select additions is not widely used
due to the heavy overhead in computing both possibilities. Consequently, many fast
arithmetic libraries ([GNU91]) do not leverage parallel computation in their addi-
tion implementations for large numbers. However, we may skip the involvement of
carries while adding two operands and later account for the carry. But, in certain sce-
narios, we may have to sequentially add the carries from the least significant digit
to the most significant digit, as each digit carry adjustment may generate further
carries, creating a chained sequential dependency. For an N-digit number, even if
we group them with K-digits, we still need to sequentially propagate nearly ⌈N/K⌉
carries.

Some progress has been made to parallelize the operations compared to Eq. 2.1.
As shown by Alexander Yee’s work for y-cruncher [Yee19], we can utilize the Kogge-
Stone adder technique [KS73], which is based on the carry propagation method, to
handle carries at a later stage. The idea is to perform the initial addition without
considering carries, then detect both the carries and instances where the intermedi-
ate sum reaches the maximum value (max-sum) for the base (denoted Bmax). Based
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on this detection, we adjust the intermediate sums to account for carries where nec-
essary (intermediate sum adjustment), thus avoiding the need for repeated carry prop-
agation while doing the addition. However, some sequential operations still need to
be performed on the carries and the max-sum detection values. As illustrated in Al-
gorithm 2, after computing the intermediate sums Si = Xi + Yi and detecting carry
(Ci) and max-sum (Mi) conditions in parallel, we must sequentially process these
masks from the least significant blocks to the most significant blocks. This sequen-
tial step in Phase 3, operating over m blocks, determines which Si values require
a +1 adjustment, introducing a dependency on the propagating carry that in some
way stalls the desired full parallelism. Notably, the implementation mentioned by
Yee [Yee19] for the algorithm 2 attempts to eliminate the sequential carry adjust-
ment in Phase 3 of Algorithm 2. However, it does so at the expense of additional
operations on the mask registers, such as XOR and masked subtraction, which may
be inefficient to perform on a very wide microarchitecture, which will, in turn, in-
crease the overall computation time. For such overhead, they claim not to see any
performance improvement compared to traditional implementation with add-carry
instructions.

Algorithm 2: Kogge-Stone Parallel Addition [Yee19; KS73]
Input : Two n-digit numbers X and Y in base B, split into m blocks of K digits each,

where Xi, Yi are the i-th blocks and X0, Y0 are the least significant blocks.
Output: Sum S = [Sm−1, . . . , S0].

// Phase 1: Addition (Parallel)
for i← 0 to m− 1 in parallel do

Si ← Xi + Yi; // Add blocks, ignore overflow

// Phase 2: Detection (Parallel)
for i← 0 to m− 1 in parallel do

if Si ≥ BK then
Ci ← 1; // Carry
Si ← Si − BK

else if Si = BK − 1 then
Mi ← 1; // Max-Sum

C′i+1 = Ci, ∀ 0 ≤ i < m− 1, C′0 = 0; // Left-shift Carries by 1 block
// Phase 3: Adjustment (Sequential)
carry← 0;
for i← 0 to m− 1 do

if C‘i = 1 or (carry = 1∧Mi = 1) then
Si ← Si + 1; // Fix incorrect blocks
if Si = BK then

Si ← 0;
carry← 1; // Propagate carry

else
carry← 0;

return S;

In contrast, the work [RSS23] presents a new addition method in Algorithm ‘Pro-
posedAdd‘, depicted in algorithm 3, utilizing ideas from carry-select addition [Bed62].
To tackle the long carry dependency chain, it breaks down the addition of large in-
tegers A and B into a smaller, parallel addition of 8-bit values ti and pi. Each digit’s
addition falls into one of three cases: no-carry (N, where ci+1 = 0), propagate (P,
where ci+1 = ci), or generate (G, where ci+1 = 1), based only on the operands. The
ti and pi values are set up to match the carry behaviour of Ai + Bi, letting carries
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be figured out fast across all digits. It starts with intermediate sums Si = Ai + Bi,
then uses the t + p addition to pull out carries, which adjust Si to get the final sum.
This skips repeated carry propagation and cuts down on data shuffling by keep-
ing carries handy. Still, figuring out ti and pi and doing a cross-digit step adds ex-
tra work, making it more computationally heavy. They observed a 30% increase in
speed with the latest CTIDH implementation, an 11% increase from the most recent
CSIDH implementation on AVX-512 processors, and a 7% boost from Microsoft’s
standard PQCrypto-SIDH for SIKEp503 running on the A64FX architecture.

Everything we’ve talked about regarding the parallelization of large-number ad-
dition can also be applied to subtraction. Instead of propagating carry, we will gen-
erate borrows and adjust −1 instead of +1. Similarly, just as we checked for partial
results hitting their maximum base value in addition, we will identify whether the
partial results reach zero for subtraction. The addition algorithm seen in algorithm 2
can be adapted to the subtraction algorithm as depicted in algorithm 4. Similarly,
the addition algorithm by [RSS23] can also be transformed into subtraction.

Algorithm 3: ProposedAdd: Proposed SIMD addition [RSS23]
Input : Two n-digit numbers A and B in base B, where A = [An−1, . . . , A0],

B = [Bn−1, . . . , B0], and Ai, Bi < BK, with A0, B0 as the least significant
digits.

Output: Sum S = ∑n−1
i=0 2i·KSi.

// Step 1: Compute intermediate sums (Parallel)
for i← 0 to n− 1 in parallel do

Si ← Ai + Bi; // Add digits, ignore carry for now

// Step 2: Set up ti and pi based on carry cases (Parallel)
for i← 0 to n− 1 in parallel do

if Ai + Bi < BK then
ti ← value for case N; // No-carry case
pi ← constant for N

else if Ai + Bi = BK − 1 then
ti ← value for case P; // Propagate case
pi ← constant for P

else if Ai + Bi ≥ BK then
ti ← value for case G; // Generate case
pi ← constant for G

// Step 3: Compute smaller addition to extract carries
s← t + p; // Add ti and pi across all digits
// Step 4: Pull out carries (Includes cross-digit operation)
for i← 0 to n− 1 do

ci ← extract carry from si, ti, pi; // e.g., si − ti − pi

// Step 5: Adjust intermediate sums with carries (Parallel)
for i← 0 to n− 1 in parallel do

Si ← (Si + ci) mod BK; // Final sum per digit

return S = ∑n−1
i=0 2i·KSi;

Again, Phase 3 of algorithm 4 poses the same issue as earlier, i.e. sequential
operating order from the least significant block to the most significant block.
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Algorithm 4: Kogge-Stone Parallel Subtraction [Yee19; KS73]
Input : Two n-digit numbers X and Y in base B, split into m blocks of K digits each,

where Xi, Yi are the i-th blocks and X0, Y0 are the least significant blocks.
Also, X ≥ Y.

Output: Sub S = [Sm−1, . . . , S0].

// Phase 1: Subtraction (Parallel)
for i← 0 to m− 1 in parallel do

Si ← Xi −Yi; // Subtract blocks, ignore borrow

// Phase 2: Detection (Parallel)
for i← 0 to m− 1 in parallel do

if Si < 0 then
Bi ← 1; // Borrow
Si ← Si + BK

else if Si = 0 then
Mi ← 1; // Min-Sub

B′i+1 = Bi, ∀ 0 ≤ i < m− 1, B′0 = 0; // Left-shift Borrows by 1 block
// Phase 3: Adjustment (Sequential)
borrow← 0;
for i← 0 to m− 1 do

if B‘i = 1 or (borrow = 1∧Mi = 1) then
Si ← Si − 1; // Fix incorrect blocks
if Si = −1 then

Si ← BK − 1;
borrow← 1; // Propagate borrow

else
borrow← 0;

return S;

2.6.2 Multiplication

In 2000, the first attempted work [Coo00] using SIMD for accelerating large-number
multiplication was done using SSE2 (128-bit vectorization) using a reduced-radix
representation method, achieving a speedup of approximately 10.7x compared to a
naive scalar implementation on an Intel Pentium 4 processor.

In 2012, a work [GK12] implemented a multiplication program using AVX2 and
reduced-radix representation for modular arithmetic, which they patched into Open-
SSL. Their evaluation showed a reduction of 50% in both the number of instructions
and the number of cycles compared to the original OpenSSL. Furthermore, in 2016
they also investigated [GK16] the potential of AVX-512 instructions, including AVX-
512IFMA and combinations of AVX-512F, AVX-512BW, and AVX-512VL. Their in-
struction count analysis for fixed operand sizes (1,024 to 4,096 bits) indicated that
implementations using AVX-512F, VL, and BW had approximately half the num-
ber of instructions compared to the GMP, while AVX-512IFMA reduced the instruc-
tion count by approximately ranging between one-fourth to one-eighth relative to
GMP. In 2014, this work [KM14] also implemented large integer multiplication us-
ing AVX-512 instructions with a 229-radix representation. Their evaluation was on
an Intel Software Developer Emulator (SDE) simulating a Knights Landing proces-
sor, which showed a 1.16x reduction in the number of instructions compared to GMP
for 2,048-bit multiplication. These prior works using the AVX2 or AVX512 family pri-
marily evaluated their results based on instruction count and cycles due to the non-
commercial availability of AVX in production. However, in 2018, the work [ET18]
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utilizes AVX-512 intrinsics on an actual Intel Xeon Phi (Knights Landing) proces-
sor to accelerate large integer multiplication. For their implementation, they chose
a reduced-radix representation (using 28 or 29 bits within 32-bit words) to manage
carry propagation during the addition of partial products. To handle variable-length
operands, they implemented a fixed-length base-case multiplication kernel( 5) using
grade-school multiplication( 2.4.1) and repeatedly called it across the operands. Fur-
thermore, they optimized the kernel by distributing sub-product arrays to minimize
pipeline stalls caused by data dependencies, scenarios that might not be represented
well through just instruction and cycle counts, as with prior works. The perfor-
mance of their implementation was compared against the GMP, achieving execution
times approximately 2.5x faster than GMP for operands of 1,024 bits to up to 7,168
bits. However, they have not provided their code of implementation, and we were
unable to verify and compare their results on the latest CPUs.

Algorithm 5: Multiplication Kernel using AVX-512 [ET18]

Input : X = ∑m−1
k=0 xkBk, a multi-precision integer with m words in radix B = 2N

(N = 28 or 29). Y = ∑n−1
k=0 ykBk, a multi-precision integer with n words in

radix B = 2N .
Output: P = X×Y = ∑m+n−1

k=0 pkBk, the product of A and B in radix B = 2N .

VLEN ← 8 ; // Vector Length for AVX-512
i← 0;
while i < n do

j← 0;
while j < m do

x ← [xj, xj+1, xj+2, . . . , xj+(VLEN−1)];
for k← 0 to VLEN − 1 do

p← [pj+k, pj+k+1, pj+k+2, . . . , pj+k+(VLEN−1)];
p← p + x× yi+k ; // Using AVX-512 intrinsics (_mm512_mul_epu32 and
_mm512_add_epi64)

j← j + VLEN;

i← i + VLEN;

Convert P back to 2N-radix representation;
return P;

In 2020, the work [ET20], by the same authors of [ET18], implemented large inte-
ger multiplication using Intel AVX-512IFMA intrinsics on a processor with Cannon
Lake microarchitecture. They adopted a hybrid approach similar to GMP, vector-
izing the base-case grade-school multiplication with AVX-512IFMA. The AVX-512F
multiplication instructions discard the higher 64-bit of the resultant, requiring a 32-
bit or smaller data representation. In contrast, AVX512-IFMA multiplication instruc-
tions offer separate access to both the lower and upper 64-bit results, though they
accept only 52-bit operands. Consequently, the authors used a reduced-radix rep-
resentation with 52-bit words. They reported a speedup of up to 2.97x over GMP.
In 2023, another study [ET23], by the same authors, employed a similar hybrid ap-
proach as [ET20], but this time using ARM-SVE for vectorization. Due to the absence
of AVX512-IFMA-like 52-bit multiplication instructions for obtaining both higher
and lower 64-bit results, the authors modified the base-case grade-school multipli-
cation technique into what they called shifted grade-school multiplication 6. They
achieved performance gains of up to 36% compared to GMP when using the trad
mode of the fcc compiler and up to 31% when using the clang mode of the fcc com-
piler for operand sizes ranging from 3,072 bits to 14,336 bits. They also noted that
the SVE implementation became faster than GMP for operands larger than 3,072 bits.



22 Chapter 2. Background & Related Works

However, for both works, we do not have access to their code and cannot verify and
compare their results on the latest CPUs.

Algorithm 6: Shifted Basecase Multiplication Kernel [ET23]

Input : X = ∑m−1
i=0 xiBi

r, a multi-precision integer with m words in radix Br = 2p.

Y = ∑n−1
j=0 yjB

j
r, a multi-precision integer with n words in radix Br = 2p.

B = 2max, Bs = 2(max−p)/2, where p < max and max− p is even.
Output: P = X ·Y = ∑m+n−1

k=0 pkBk
r , the product of X and Y in radix Br = 2p.

X′ ← ∑m−1
i=0 x′i B

i
r ← ∑m−1

i=0 xiBsBi
r ; // Shifted representation of X

Y′ ← ∑n−1
j=0 y′jB

j
r ← ∑n−1

j=0 yjBsBj
r ; // Shifted representation of Y

P← 0 ; // Initialize product
for j← 0 to n− 1 do

for i← 0 to m− 1 do
pL ← (xi · yj) mod Br ; // Lower part of the product
pH ← (x′i · y′j)/B ; // Higher part of the shifted product

P← P + pLBi+j
r + pH Bi+j+1

r ; // Accumulate into P

return P;

The work [Zha] compares grade-school and Karatsuba algorithms for multiply-
ing large integers, looking at execution time, complexity, and resource use. It shows
Karatsuba’s divide-and-conquer method, which needs fewer multiplications, beats
traditional ones in speed and scalability for big numbers. Theoretical and experi-
mental results highlight how picking the right algorithm boosts performance.

2.7 Vectorization (SIMD)

As per Flynn’s taxonomy [Fly66], high-speed computing systems can be classified
into four categories, namely, (i) Single Instruction Stream-Single Data Stream (SISD),
(ii) Single Instruction Stream-Multiple Data Stream (SIMD), (iii) Multiple Instruction
Stream-Single Data Stream (MISD) and (iv) Multiple Instruction Stream-Multiple
Data Stream (MIMD).

Most of the sequential work that we perform on current CPUs is categorized
into either SISD (when we typically work on a single core without any threading) or
MIMD (working with multiple cores and different data streams on different cores).
However, lately, most modern CPUs have started supporting SIMD capabilities as
an extension feature.

In SISD systems, a single instruction is executed on a single data item at a time,
as is the case with uniprocessor systems or a single core of a modern CPU without
threading or vectorization. For instance, a basic arithmetic operation (e.g., adding
two integers) on an Intel x86-64 CPU, when executed without parallelism, shows
SISD behaviour. While less common in isolation today due to advanced features,
SISD remains the foundational execution mode for non-parallel tasks. MISD in-
volves multiple instruction streams operating on a single data stream, a rare con-
figuration in practice. Theoretically, it could apply to systems where different algo-
rithms process the same input for fault tolerance or redundancy, such as in some
specialized pipeline architectures. However, modern general-purpose CPUs like In-
tel x86_64 do not natively implement MISD for commercial processors. MIMD sys-
tems execute multiple independent instruction streams on multiple data streams,
offering the highest degree of parallelism. Modern multi-core Intel x86-64 CPUs,
such as the Intel Core i9-13900K with 24 cores (8 performance + 16 efficiency), serve
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TABLE 2.3: Evolution of SIMD Instruction Sets Across Major CPU
Vendors

SIMD Version Year Processor Key Features Vendor Source

MMX 1997 Intel Pentium P5 64-bit vector, multimedia Intel [Inc97]
SSE 1999 Intel Pentium III 128-bit, floating-point, graphics Intel [Cha99]
SSE2 2000 Intel Pentium 4 Double-precision floating-point Intel [SSEa]
SSE3 2004 Intel Pentium 4 Prescott Horizontal register operations Intel [SSEb]
SSE4.1 2007 Intel Penryn 47 new vector instructions Intel [SSEc]
SSE4.2 2008 Intel Nehalem 7 new string/text instructions Intel [SSEc]
AVX 2011 Intel Sandy Bridge 256-bit vector processing Intel [AVXa]
AVX-512 2016 Intel Xeon Phi x200 (Knights

Landing)
512-bit vectors, HPC/AI accel-
eration

Intel [AVXb]

3DNow! 1998 AMD K6-2 64-bit SIMD for graphics AMD [3dN]
AVX (AMD) 2011 AMD Bulldozer 256-bit vector, software compat-

ibility
AMD [AVXa]

ARM SIMD 2002 ARMv6 (ARM1136) 32bit wide SIMD ARM [ARM]
NEON 2005 ARMv7 Cortex-A 128-bit SIMD, mobile multime-

dia
ARM [ARM]

SVE 2016 ARMv8-A (A64FX) Scalable vectors, up to 2048 bits ARM [Ste16]

as MIMD by running distinct threads or processes across cores. Hyper-Threading
further enhances this by allowing each core to handle multiple threads.

On the other hand, SIMD systems execute a single instruction across multiple
data elements simultaneously, which is ideal for data-parallel tasks. Modern CPUs,
including Intel x86_64, have increasingly adopted SIMD through vector instruction
extensions.

The evolution of SIMD in Intel processors began with the introduction of MMX
(MultiMedia Extensions) in 1997 on the X86 Pentium P5 [REU97], supporting 64-bit
vector operations. On AMD processors, SIMD started with 3DNow! in 1998, and on
ARM processors, it started with ARM-v6 from ARM1136 in 2002. Table 2.3 lists out
the beginning of various SIMD versions across different vendors.

2.7.1 AVX-512

For Intel and AMD’s implementation of AVX-512, Figure 2.2 shows the register con-
figuration within SIMD registers. These registers support vector widths of 128-bit
(SSE-style), 256-bit (AVX2-style), or 512-bit (AVX-512). A 512-bit AVX-512 register is
constructed out of four 128-bit registers, referred to as lanes. Each lane can be further
subdivided into individual elements of 64, 32, 16, or 8 bits. Processors supporting
AVX-512 provide access to 128-bit (xmm) registers, 256-bit (ymm) registers, and 512-
bit (zmm) registers, with SIMD operations applied to the 64-bit, 32-bit, 16-bit, or 8-bit
elements within these registers. Load or store operations on a 512-bit (zmm) vec-
tor register typically process data contiguously across all four lanes, from lane-0 to
lane-3, in little-endian byte order. In our work, we have explored AVX-512 on X86-64
architecture, leveraging its 512-bit vectorization to process eight times more data per
instruction than traditional 64-bit scalar registers. AVX-512 represents a set of 512-bit
extensions to the 256-bit Advanced Vector Extensions SIMD instructions within the
x86 instruction set architecture (ISA). Initially introduced by Intel in July 2013, these
extensions were first integrated into the 2016 Intel Xeon Phi x200 (Knights Landing)
and subsequently adopted in various AMD and Intel CPUs.

AVX-512 instruction set typically refers to a family of 512-bit vector extensions,
which can be implemented independently. The family of AVX-512 instruction set
[Int24] consists of the following set of independent instruction sets: AVX-512F serves
as the foundational set of AVX-512 instructions, enabling basic 512-bit vector opera-
tions like floating-point arithmetic and data movement. AVX-512BW adds support
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FIGURE 2.2: Layout of Various Sizes of SIMD Register and How Each
Can Be Broken Down into Smaller Subgroups of Elements [Tow22]

for byte and word integer operations. AVX-512CD includes conflict detection capa-
bilities. AVX-512DQ extends integer operations to 32-bit and 64-bit data. AVX-
512IFMA52 offers integer fused multiply-add with 52-bit precision. AVX-512VL
supports shorter vector lengths (128-bit and 256-bit) with AVX-512 instructions. AVX-
512VPOPCNTDQ enables population count operations on 32-bit and 64-bit inte-
gers. AVX-512_BF16 implements bfloat16 operations. AVX-512_BITALG provides
advanced bit manipulation features. AVX-512_VBMI facilitates byte-level vector
manipulations. AVX-512_VBMI2 builds on VBMI with additional data compression
and expansion instructions. AVX-512_VNNI accelerates integer-based neural net-
work operations. AVX-512_VP2INTERSECT offers vector intersection instructions.
Finally, AVX-512_FP16 adds 16-bit floating-point support. It is important to note
that vendors offer different sets of AVX-512 support based on the micro-architecture;
therefore, one should check the list of CPU flags for it.

We may utilize these AVX-512 instructions in two ways: writing direct assem-
bly or using intrinsic function calls in C/C++ or even on Rust (core::arch module,
nightly-only). Using intrinsic function calls might be easier for a programmer, as it
provides the same effect as writing low-level code but offers better readability and
availability of source code. Prior works on large-number addition, subtraction, and
multiplication have utilized AVX-512F and AVX-512IFMA52 instruction sets, where
most of them [ET18; ET20; Did+24] used the intrinsics, and few of them [KM14] in-
vestigated the AVX-512 instruction set using assembly for large-number arithmetic.

2.7.2 AVX-10

In 2023, Intel introduced AVX10 [Int], the successor to AVX-512, which unifies its
capabilities into a single, versioned instruction set. Unlike AVX-512, which was
limited to P-cores in high-end processors, AVX-10 extends its functionality to both
P-cores and E-cores in all future Intel processors. AVX10.1, an early version that
includes the instructions from AVX-512 at 128, 256, and 512-bit vector lengths, de-
buted with Granite Rapids in Q3 2024 for software pre-enabling. Applications writ-
ten for AVX10.1 will be compatible with any future Intel processor (P-core or E-core)
that supports AVX10.1 or higher at the same vector lengths. AVX10.2, expected to
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launch with Diamond Rapids in 2025–2026, will introduce new AI and data instruc-
tions, and it will require 512-bit support across all cores. While all AVX-512 instruc-
tions will remain forwards-compatible with AVX10/512, those using AVX10/256
may need to be recompiled for E-cores. Intel’s ongoing specification updates are
designed to promote broader adoption and simplify the development process.

2.8 Parallel Algorithm Design

By means of parallel algorithms, we fundamentally want to execute a larger task
by dividing it into n small and independent subtasks and processing them indepen-
dently across n different processing units at the same time, achieving a speed-up
of factor n as compared to executing the sub-tasks sequentially n times in a single
processing unit. However, not all tasks can be divided into independent sub-tasks.
Designing a parallel algorithm may involve [Gra08]: 1) Identifying portions of work
that can be computed independently. 2) Map the independent sub-tasks onto multi-
ple processing units. 3) Reduce the work output by the processing units at various
stages. Overall, we need to decompose the task into multiple independent sub-tasks.
Moreover, a finer decomposition will lead to greater concurrency.

In the context of large-number addition and subtraction, we need to identify
the perfect decomposition that can achieve maximum parallelism. Existing works
tried to decouple the carry or borrow dependency from the main computation of
add/subtract as much as possible without affecting the correctness and later ac-
counted for them through a carry-select idea [RSS23] and creating a smaller sequen-
tial task or even running a check later-on for adjustment [Yee19], trying to increase
the parallelism.

But for large-number multiplication, things are more complicated than just carry-
or borrow-propagation with addition or subtraction. Fundamentally, multiplication
is a more computationally heavy task in terms of CPU cycles; the first need is to
reduce the number of multiplications. Current research on reducing the number
of multiplication resorts to divide-and-conquer approaches like Karatsuba or Toom-
Cook, where the number of multiplications is reduced in each recursion through per-
forming extra addition or subtraction. However, the divide-and-conquer technique
hampers the parallelism with the current hardware resources to a large extent, i.e.
until the operand sizes become suitable enough to be processed by the parallel com-
puting units (i.e. vector registers) [ET20; ET23], we further split the operands on the
go. When the operand sizes are suitable enough, we apply the base-case multipli-
cation algorithm using SIMD constructs. Even base-case multiplication algorithms
like grade-school multiplication are not fully parallelizable due to dependency on
adding the partial products, propagating carry, etc. Adding the partial product is
challenging due to the fact that current SIMD capabilities limit horizontal additions
across contiguous lanes and are typically much slower compared to vertical addi-
tions. Unlike addition or subtraction, where the decoupled carry/borrow phase of
the algorithm is required, we can simply load the operands into the vector registers,
limited only by the register widths.
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Chapter 3

Parallelizing the Addition of Large
Integers

In this chapter, we first present our approach for parallelizing addition on large ran-
dom integers. After that, we discuss the implementation, addressing the challenges
and the less successful implementations, followed by the evaluation of the final im-
plementation.

3.1 Parallel Multi-phase Addition Algorithm

In this work, we have modified the Kogge-Stone addition algorithm (see Algorithm 2)
to facilitate parallel computations in most scenarios. Instead of adopting a pes-
simistic approach, we take an optimistic one. The implementation by Yee ([Yee19])
of the Kogge-Stone addition algorithm seeks to identify all possible carries while
checking for carries and maxed-out blocks. It then performs some operations on
the carry and max detect masks and adjusts the intermediate sums. Although this
implementation has successfully omitted the sequential operations to a large extent,
using the max and carry block technique, they claim not to get much performance
gain in comparison to typical add-carry instructions due to inefficient support for
performing operations on the masked registers on x86-64 CPUs.

However, with our optimistic approach, we assert that for 64-bit limbs with a
saturated base, in 99.999999999999999994578989137572% of cases, the generation of
carries in the current limbs and their preceding limbs getting maxed out after the
carry-independent addition will not occur for randomly generated large numbers
(later described in Chapter 5). Accordingly, we have modified the algorithm to re-
flect this insight.

We will approach this by implementing a four-phase approach for adding large
numbers:

• Phase 1: The limbs from both operands are added in parallel, ignoring any
potential carry.

• Phase 2: Carries are detected across all limbs simultaneously.

• Phase 3: If an intermediate resultant limb generates a carry, it is added to its
preceding limb in parallel, simulating the carry adjustment.

• Phase 4: Only in the rare case where further carries are produced do we adjust
them in the Kogge-Stone technique to ensure correctness.

Algorithm 7 illustrates the process of adding two large numbers using the ap-
proach described above. The algorithm operates in four distinct phases. In our case,
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the additions in Phase 1 add Xi and Yi without taking carries into account, so all
the additions are independent of each other. The carries are detected independently
in Phase 2 and then added back in Phase 3, mitigating the typical carry propaga-
tion stalls. However, after Phase 3, though highly unlikely, further carry propaga-
tion may still be needed; in that case, we detect the maxed-out blocks, and with
the consideration of carry-generating blocks, we adjust the intermediate sums and
propagate carries in Phase 4.

The adjustment of the intermediate sums after detecting the carries generated in
Phase 3 can be done in several ways, such as propagating the carries sequentially or
employing the Kogge-Stone adder method. We have chosen to approach the Phase 4
using the Kogge-Stone adder technique, as it simply utilizes carry positions and
maxed-out blocks, which avoids the sequential adjustment of the carries, making it
much faster to compute.

As we can observe, all the operations in Phase 1, Phase 2, and Phase 3 can be done
in parallel, one after the other, and that is where we may exploit parallelism using
vectorization. While the need for Phase 4 arises only when further carries are gen-
erated, potentially introducing some sequential operations on a smaller subset and
thus a degree of performance degradation, the overall approach still remains sig-
nificantly faster than purely sequential carry propagation. Thus, these four phases
aggregately make the large-number addition faster than sequentially adding up the
limbs and propagating the carries one by one (Eq. 2.1).

3.1.1 Proposed Addition Algorithm

Next, we describe the design of our parallel addition algorithm, named Parallel
Multi-Stage Large-Number Addition (PML Add), which is shown in Algorithm 7.
The algorithm operates in four phases, which were described before, building on
the carry propagation chaining. Phase 1 adds the two blocks in parallel, ignoring
any carry, followed by Phase 2 detecting the carries in parallel. Phase 3 then works
in parallel to add the carries to the respective blocks in case of a carry generated
by the preceding blocks. If, after Phase 3, further carries are generated, we adjust
the carries using the Kogge-Stone Adder technique ([Yee19]) in Phase 4, which is a
rare case with a large K. Although determining whether to enter Phase 4 or not in
the algorithm appears straightforward and efficient, this can introduce a significant
performance overhead with large operands, as we show later in Chapter 5.

In Phase 4 of the algorithm, we already have the information about the blocks
that have generated the carries. We first detect the maxed-out blocks; with the
shifted carry values, if we add the carries to the respective blocks, further carry will
only be generated if the blocks to which carries are added are maxed out. Thus, we
can add the carry and max_mask bits, simulating the actual scenario. This is followed
by XORing the resultant mask bits with max_mask bits ([Yee19]). With these updated
masking bits, we will add one to the respective intermediate sums from Phase 3.

Note that C_mask and max_mask contain either 0 or 1, denoting the carry or
maxed-out blocks for their respective positions. Thus, these values can be stored
in a much smaller space than the original numbers. Also, if we are processing the
parallel parts in chunks, as with vectorization, these carry and maxed-out masks
are constant in size and can fit into a typical mask register. By this method, we
can avoid sequential propagation of carries. While computations combining all four
phases seem computationally expensive, Phase 4 only triggers rarely, giving the par-
allelization benefits from Phases 1-3. However, with architectural constraints, one
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may mitigate the slowdown of Phase 4 by operating in chunks of elements and uti-
lizing masked registers ([Yee19]). The efficiency of operating on the masked registers
is purely micro-architecture dependent; this might adversely affect the performance,
as noted in prior works ([Yee19; RSS23]). As a result, in our implementation, we typ-
ically avoid operating (e.g. adding up the masked registers) on the masked registers
by putting this in Phase 4, which almost never gets executed. The final implementa-
tion of the Algorithm 7 is outlined in implementation 8.

Algorithm 7: Proposed Parallel Multi-Stage Large-Number Addition (PML
Add) Algorithm

Input : Two n-digit numbers X and Y in base B, split into m blocks of K digits each,
where Xi, Yi are the i-th blocks and X0, Y0 are the least significant blocks.
Also, 0 ≤ Xi, Yi ≤ BK − 1.

Output: Sum S = Sp−1 . . . S0, where S0 is the least significant block.

// Phase 1: Compute Intermediate Sums (Parallel)
for i← 0 to m− 1 in parallel do

Si ← Xi + Yi

// Phase 2: Detect Carries (Parallel)
carry_detect← false; // Flag for carry presence
for i← 0 to m− 1 in parallel do

if Si >= BK then
Ci ← 1
Si ← Si − BK

carry_detect← true; // Mark carry existence

C′i+1 = Ci, ∀ 0 ≤ i < m− 1, C′0 = 0
// Phase 3: First Round of Carry Addition (Parallel)
if carry_detect = true then

carry_detect← f alse
for i← 0 to m− 1 in parallel do

if C′i = 1 then
Si ← Si + 1; // Add carry, modulo 232

if Si ≥ BK then
carry_detect← true C′i ← 1 Si ← Si − BK

else
C′i ← 0

// Phase 4: Carry Propagation (Detect Max Blocks and adjust accordingly)
if carry_detect = true then

C_mask← C′i for all i ; // Initialize carry mask from previous phase
// Detect maxed-out blocks and propagate carries in parallel
for i← 0 to m− 1 in parallel do

max_maski ← (Si = BK − 1) ; // Check if block is at max value

// Propagate carries
C_mask← C_mask≪ 1 ; // Left shift carry mask
C_mask← C_mask + max_mask ; // Add max mask
max_mask← C_mask⊕max_mask ; // XOR operation
// Adjust sums based on propagated carries
for i← 0 to m− 1 in parallel do

if C_maski = 1 then
Si ← Si + 1 ; // Add incoming carry
if Si ≥ BK then

Si ← Si − BK ; // Adjust sum

Return S;
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Example 3.1.1.1.
The instance below triggers through all the phases:

Assuming B=10 and K=2
a: 42 11 97 78
b: 12 88 02 30
+ ------------------
s: 54 99 99 08 (phase 1, parallelly adding up)
--------------------
c: 0 0 0 1 (phase 2, detecting carries)
c: 0 0 1 0 (left shifted to account for adjustment)
--------------------
s: 54 99 99 08
c: 0 0 1 0
+ ------------------ (phase 3, adjusting the carries)
s: 54 99 00 08
--------------------
c: 0 0 1 0
Now that further carries are generated,
we will proceed with phase 4
--------------------
c: 0 1 0 0 (c=<<1)
m: 0 1 0 0 (maxed out blocks)

----------------
c: 1 0 0 0 (c+=m)
m: 1 1 0 0 (m XOR=c)
--------------------
s: 54 99 00 08
m: 1 1 0 0
+ ------------------
s: 55 00 00 08 (result)

3.2 Implementation of Proposed PML Add using AVX-512

To parallelize the large number addition, we have used SIMD constructs, specifically
AVX-512 instructions, on a recent x86-64-based CPU. Instead of direct assembly in-
structions, we have used the AVX512 intrinsic function calls in C and relied on the
compiler to generate the necessary conversion to AVX instructions for easier pro-
gramming.

3.2.1 Data Representation

We have opted for a contiguous array of limbs to represent large numbers and op-
timize cache performance. Register-based representation can be utilized only for
smaller numbers; we have chosen memory-based representation to handle much
larger values and enable efficient contiguous loads and stores into and from 512-bit
AVX registers. For our experiments, we typically selected a 64-bit limb size to align
with the word size of modern x86-64 CPUs and reduce the total number of limbs.
Minimizing the limb count helps exponentially decrease the number of operations
in multiplication, as the multiplication algorithms we chose incur O(nx) time com-
plexity.
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We deployed a struct-based approach, having a total of four fields:

typedef struct
{

aligned_uint64_ptr limbs; // Pointer to the limbs
bool sign; // Sign of the number
size_t size; // Size of the limbs
bool overflow; // Indicates of overflow after addition

} limb_t;

We store the absolute values in a contiguous memory block, the count of limbs in
the size field and the sign of the operand in a separate sign field.

We employ a native-radix or saturated representation for addition operations, fully
utilizing all 64 bits.

When it comes to limb ordering, we typically read string inputs for the operands
starting from the least significant end (the right side) of the string. Then, we may
store these values either from the highest index of the limb array or from the lowest
index of the limb array and fill the remaining indexes of the limb array contiguously.
We may use either of the representations shown below and have used them inter-
changeably across experiments. Specifically, in the final implementation of PML
Add (Algorithm 8), we switched to storing the limbs from the lowest index.

Example 3.2.1.1.
Consider a random 256-bit hexadecimal string:

0xEF1206754ee9451FA5F3C7B912E4D86F1B92A0D5E7C8F9346D1B5E2F9A3C7D8E

64-bit Native-radix Representation
(Highest Index)

limbs64 =

i limbs64[i]
0 0xEF1206754EE9451F
1 0xA5F3C7B912E4D86F
2 0x1B92A0D5E7C8F934
3 0x6D1B5E2F9A3C7D8E

64-bit Native-radix Representation
(Lowest Index)

limbs64 =

i limbs64[i]
0 0x6D1B5E2F9A3C7D8E
1 0x1B92A0D5E7C8F934
2 0xA5F3C7B912E4D86F
3 0xEF1206754EE9451F

Observation: Our initial implementation represented numbers using base-10, i.e.,
as decimals, and to accommodate 32 or 64-bit limbs, we utilized an unsaturated
representation accordingly (e.g., for 32-bits, we were storing up to 9 decimal digits
into each 32-bit limb and for 64-bits we were storing 19 decimal digits). However,
this approach of representation was computationally costly, and to extract high or
low bits, we had to perform division and modulo operations. In contrast, with a
hexadecimal representation, we could use shifting and logical operations, which are
more efficient than performing division and modulo.

3.2.2 Implementations

Before obtaining our final addition implementation, we had two sub-optimal im-
plementation approaches, which we briefly discussed first, followed by the final
version:

Sub-optimal Implementations

First Version: Decimal-based unsaturated-radix of 64-bit limbs
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Initially, we went for a decimal-based representation of strings and packed them
within 18 digits into chunks of 64-bit limbs. The idea is similar to the approach we
discussed (Algorithm: 7), but the only difference is that we were handling the last
phase sequentially.

Approach:

1. Loading operands from the starting address of memory in chunks of 512-bits

(a) Add them

(b) Check for carry and generate a carry mask of 8 bits for eight 64-bit limbs

(c) Subtract 1e18 from sum in-case of carry

(d) Store the intermediate result back in memory

(e) Store the carry mask in an array

2. Left-shift the carry mask array by one position

3. Loading the intermediate sums from memory in chunks of 512-bits

(a) Add 1 based on the left-shifted carry mask value

(b) Check again for carry and store it in a carry mask array

(c) Subtract 1e18 from sum in-case of carry

(d) Store the result in memory

4. Check if new carries are generated; if yes, handle them sequentially

Although with our test cases, the last phase was never triggered, this implemen-
tation did not give any speed-up as compared to GMP, and performance was much
more degraded for higher-sized operands. Also, this decimal-based representation
did not fully utilize the bits, as it had to be an unsaturated representation. Also,
performing addition on unsaturated limbs does not actually wrap around. Conse-
quently, we had to manually subtract the resultant from the max-base to adjust to
the correct resultant, incurring more cost in comparison to wrapping around.

Second version: Hexadecimal-based saturated-radix Addition of 64-bit limbs
Instead of using decimal-based representation, we moved to hexadecimal-based

representation to utilize the limbs fully and eliminate the manual adjustments in case
of overflows. We implemented Algorithm 7 by splitting it into separate independent
phases. To take advantage of AVX512 for parallel addition, we’re limited to adding
two 512-bit vectors at a time (two sets of eight 64-bit values). For each addition,
we load eight numbers from one set (say X) and eight from another (say Y) into
two AVX512 registers, perform the addition, and get our intermediate sums. Since
AVX512 only gives us a handful of registers to work with, we can’t hold all the sums
in them at once. After each addition, we store the intermediate sums back in memory
to free up space for the next set of numbers. Here’s how it breaks down across the
phases:

• Phase 1: We load the operands in chunks of eight pairs, add them using AVX512 and
save the intermediate sums to memory. Repeat this for all the chunks remaining.

• Phase 2: We pull those intermediate sums back from memory (again, eight at a time),
run the necessary computations, like checking for overflows or making adjustments,
and store the updated sums back to memory.

• Carry Shift: Next, we shift the carry-bit array (tracking overflows) one position to the
left. This step is tricky because it’s tough to parallelize with AVX512, so it might have
to happen one element at a time sequentially.
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• Phase 3: We load the adjusted sums from Phase 2 back into registers, still in chunks of
eight, do more computations, and save the results to memory unless Phase 4 kicks in.

This approach boosted the performance a bit but was still much slower com-
pared to GMP across 65536 bit-sized operands. Mainly, the big issues for not getting
performance improvements are:

1. Too Much Memory Back-and-Forth: We’re constantly loading and storing interme-
diate sums between memory and registers across Phases 1 to 3. This ping-ponging
slows things down since memory access, even if it is cached, takes way longer than
working in registers.

2. Stuck on the Carry Shift: Shifting the carry-bit array on the memory doesn’t play
nice with parallel processing, creating a bottleneck that downgrades AVX512’s speed
benefits. As a result, we relied on the typical ALU operations for shifting the carry bit
array:

Example 3.2.2.1.

for (int i = 0; i < n-1; --i){
carry_arr[i] = carry_arr[i+1];

}

Solution: To tackle the memory-back-and-forth issue, we tweaked the imple-
mentation slightly by removing the redundant loads and stores. Also, we started
processing the limbs in chunks of eight from the least significant end (highest in-
dex) toward the most significant. This also allows us to propagate carries directly
through the computation without unnecessarily writing intermediate results back
to memory. A key improvement lies in how we handle carry bits: instead of storing
the final carry from each chunk and reloading it later, we extract it immediately and
shift it into the carry mask for the next phase’s addition.

Also, we tried to use masking load and stores for an operand size of 256-bit so
that it does not include unintended data to be loaded or stored in memory. How-
ever, we saw performance degradation with masking load and stores during the
implementation. Hence, we switched to using AVX2 (256-bit vectorization) only for
256-bit operands, avoiding the performance issue with masked load and stores.

Final Implementation of PML Add

Finally, to implement the PML Add (algorithm 7), we utilized 64-bit native-radix
limbs in hexadecimal representation. The implementation approach is depicted
here: algorithm 8.

For parallelization, we can process two sets of eight 64-bit elements using the
AVX-512 registers. We begin by loading eight limbs from both operands into the
AVX512 registers, and then we add them in parallel. Next, we detect probable carries
through a simple wrap-around check and generate an 8-bit mask. We extract the
carry bit value from lane-3’s second value and store it in c_out, as it needs to be added
to the first element in lane-0 in the next round of addition. To manage the carries,
we shift the 8-bit carry_mask one bit to the left. We then combine this shifted mask
with any previous c_in (which starts as 0; the current round’s c_out becomes the next
round’s c_in. If any carry was detected, we add 1 to all the elements inside the lanes
of the intermediate sum according to the carry_mask. We check for probable carries
again. Finally, we store the eight intermediate sums from this round in memory
at the same index from which the operands were read. Rarely, even when Phase 4
is triggered, we are handling the carry propagation using the carry and maxed-out
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logic. We then modify our index pointer by eight positions and repeat the same
set of operations while moving towards the remaining elements. One thing to note:
for the final implementation of addition and subtraction, we tweaked the ordering
of the elements stored; earlier, we were storing from the highest index, and now
we have switched to storing from the lowest index. Thus, we move from lowest to
highest.

Algorithm 8: Outline of implementation of PML Add using AVX512
Data: Arrays x and y of 64-bit elements, output array s, size n (multiple of 8)
Result: s = x + y
c_in← 0, c_out← 0 ; // Initialize carry variables
for i← 0 to n - 8 step 8 do

c_in← c_out ; // Propagate carry from previous round
// Phase 1: Parallel Addition
x_vec← Load eight 64-bit elements from x[i] ;
y_vec← Load eight 64-bit elements from y[i] ;
r_vec← x_vec + y_vec ; // Add eight elements in parallel
// Phase 2: Carry Detection
carry_mask← Generate 8-bit mask where r_vec < x_vec ; // Detect carries
c_out← carry_mask » 7 ; // Extract highest carry
carry_mask← carry_mask « 1 ; // Shift left
carry_mask← carry_mask | c_in ; // Combine with input carry
// Phase 3: Adjust Carries
carry_vec← Set 1s in lanes based on carry_mask ; // Create carry vector
r_vec_new← r_vec + carry_vec ; // Apply carries
mask_new← Generate 8-bit mask where r_vec_new < r_vec ; // Check new
carries

r_vec← r_vec_new ;
// Phase 4: Handle Further Carries
if mask_new is non-zero then

mask_new← mask_new « 1 ; // Shift carries
eq_mask← Generate 8-bit mask where r_vec = all-ones ; // Detect all-ones
mask_new← mask_new + eq_mask ; // Combine masks
c_out← c_out | (mask_new » 8) ; // Update carry out
sub_mask← mask_new XOR eq_mask ; // Compute subtraction mask
r_vec← Subtract all-ones from r_vec in lanes where sub_mask is set ;
// Adjust result, with the help of wrap around

// Store Results
Store eight 64-bit elements from r_vec to s[i] ;

result.carry← c_out ; // Store final carry

In Phase 3, instead of preparing Ones inside carry_vec, we can also opt for sub-
tracting the values with maximum-base based on the carry_mask, which will mini-
mize the number of operations (similar to the Kogge-Stone technique). Specifically,
we can subtract an all-ones vector from r_vec in lanes where the carry_mask is set.
We performed the final implementation exactly.

Compilers, including the Intel Compiler, typically avoid generating complex se-
quences of mask instructions. Instead, they prefer to move data into general-purpose
registers for processing and then return it to mask registers. Therefore, when pro-
gramming in C, it is essential to ensure that the compiled code does not move masks
back to general-purpose registers, as this can degrade performance.

Initially, we declared the carry input (c_in) and carry output (c_out) as unsigned
8-bit integer variables. However, we defined the carry_mask as an __mmask8 variable
type. Although the code to shift the carry_mask (carry_mask << 1) was generated
using AVX registers, the operation for carry_mask|(c_in >> 7) was performed with
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general-purpose registers. This happened because c_in was declared as a uint8 type,
leading the compiler to prefer avoiding the complexity of converting it into AVX
registers.

Additionally, storing the result of carry_mask and c_out as a uint8 type was also
executed using general-purpose registers.

Example 3.2.2.2.
A snippet of code that faces the above-mentioned issue:

some_func(result, a, b, uint8 c_in, uint8 *c_out) {
...
...
(*c_out) = carry_mask & 1;
carry_mask <<= 1;
carry_mask |= (c_in >> 7);
...
...

}

For this reason, we did not see any speed-ups, but we matched the performance
with GMP. In order to tackle this, we tried to tweak the variable declarations of c_out
and c_in into __mmask16 to avoid the involvement of general-purpose registers, and
instead of using typical OR operation, we used _mm512_kor(), which computes the
bitwise OR of 16-bit masks provided to it on the AVX registers. However, shifting
operations like carry_mask << 1 and c_in >> 7 have to be handled by the general-
purpose registers, and we can’t do much about it currently as we don’t have any
available instructions that can directly shift bits inside the mask registers.

Example 3.2.2.3.
Below is the optimized code snippet instance:

some_func(result, a, b, __mmask16 c_in, __mmask16 *c_out) {
...
...
(*c\_out) = carry_mask;
carry_mask <<= 1;
c_in = (c_in >> 7);
carry_mask = _mm512_kor(carry_mask, c_in);
...
...

}

Also, after all rounds are over, we check for the c_out. If its least significant bit
is one, we pass the information about the carry-out, too, so that the sum can be ad-
justed properly. This carry-out information is not needed for subtraction operations.

One benefit of processing eight elements and finishing each of the needed op-
erations on these elements is that the Phase 4 trigger event is limited only to these
eight elements. In another way, even if the rarest situation where the current limb
generating carry and the preceding limb is maxed out, i.e. Phase 4 is triggered, with
the algorithm 7 we may have to sequentially move from the least significant end to
the most significant end (the problem with the second version of the sub-optimal
implementation. However, with this implementation, the adjustment in phase 4 is
just limited to the current eight limbs without affecting the next round of limbs. Un-
less each round consists of the operands that lead to Phase 4 triggering, we only
process and adjust carry for some of the rounds, thereby gaining performance gains.
By doing all of these, we have got the speed-up now, finally!, as compared to GMP.
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Following AVX512 intrinsics (from AVX512-F and AVX512-VL) were utilized for
the PML Add implementation:

1. _mm512_load_si512: For loading the operands from memory into AVX512 registers

2. _mm512_add_epi64: For adding up two sets of eight 64-bit elements loaded into two
AVX512 register

3. _mm512_cmplt_epu64_mask: For generating the 8-bit carry mask using wrap-around
check; performs less-than checks of eight 64-bit values of two AVX512 register

4. _mm512_mask_set1_epi64: To produce eight 64-bit 1’s based on carry_mask to be added
to intermediate sum

5. _mm512_kor: To compute OR between two 16-bit mask registers

6. _mm512_kand: To compute AND between two 16-bit mask registers

7. _mm512_store_si512: To store AVX512 register content into memory

The programming approach implements the PLM Add using a macro-based AV-
X512 vectorized kernel, which does all the operations by taking the operands and
previous round carry-in using AVX512 and returns the sum as well as the carry-out
for the next round. We repeatedly call this kernel for all the operands from the least
significant end towards the most significant end, passing eight limbs at a time and
the carry-out of the previous round.

The current implementation assumes that both operands are equal-sized and are
of at least 512 bits, and the number of limbs is a multiple of 8. If we are working with
128-bit or 256-bit, instead of using AVX512, we can use AVX2 for 256-bit and SSE2
for 128-bit and adjust the implementation accordingly. Also, if the limb count is not
a multiple of eight, we may use a combination of AVX256, AVX2 and manual 64-bit
to take care of the remainder of element additions. Figure 3.1 shows the overview of
the AVX512 Lane operations for eight limbs (512-bits) using PML Addition, showing
operations of the three phases (Phase 4 is not shown for simplicity).
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FIGURE 3.1: Overview of AVX Lane operations for eight limbs using
PML ADD

3.3 Evaluation

The core questions we are trying to answer here are the following:

1. Are the computations yielding correct results?

2. Are we getting any performance improvements, in terms of execution time,
instruction count, and CPU Cycles, over GMP?

3. How much performance gain do we get compared to GMP for addition with
different data sizes?

4. How much performance gain are we observing with vectorization as com-
pared to a non-vectorized baseline implementation?

For the vectorized C code implementation of addition (PML Add), we have uti-
lized the GCC compiler with the following optimization flags:

-mavx512f -mavx512vl -O1

Also, we compiled the baseline variant using the O1 flag. The implemented codes
are available in the GitHub repository at https://github.com/iamsubhrajit10/
Large-Number-Arithmetic-Operations.

The correctness check and benchmarking were conducted on an x86-64-based
Intel Xeon E-2314 CPU, with four cores and 32 GB RAM, clocked at 2.80 GHz, based
on Rocket Lake microarchitecture, equipped with the necessary AVX-512 instruction
set support, running on Fedora 41 OS with Red Hat 14.2.1-7 GCC compiler.
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3.3.1 Correctness

To validate the correctness of our vectorized addition implementation while achiev-
ing performance gains, we generated multiple sets of 1,00,000 random test cases us-
ing the random numbers produced by the Mersenne Twister random number gen-
erator [Wik] seeded with a random integer between 1 and 4,294,967,295 for each
operand size implemented via Python’s random module and the gmpy2 ([PYP]) li-
brary. These test cases were stored as strings in files, formatted as <operand1,
operand2, result>, with results precomputed for validation. We created multiple
such sets of 1,00,000 test cases over different operand sizes ranging from 256 bits
to 1,31,072 bits, spanning different time frames over approximately three months, to
mitigate potential biases in the pseudo-random number generator. For each such set,
we read the files from our C code, computed the product of operand1 and operand2
using our implementation, and verified the outputs against the precomputed result
values, ensuring correctness across all test scenarios. We read string inputs from the
files and converted our results back to a string for comparison.

All computations we performed for addition operations using PML Add yielded
correct results (compared to pre-computed values using the gmpy2 library). No-
tably, phase 4 of the algorithm (ref algorithm: 7) was never executed with the set of
lakhs-and-lakhs of randomly generated test cases over different bit sizes, primarily
because of the rare chance, i.e. 1/264 (refer to Section 5.1). However, for complete-
ness, we manually passed through some test cases where the phase would trigger,
and we got matched with the pre-computed results.

3.3.2 Performance Compared to GMP and Baseline

The work by [RSS23] did not provide their source code or detailed implementation
specifics for addition, making it challenging to replicate and compare their perfor-
mance gains with our implementation. On the other hand, the implementation of
Kogge-Stone Adder by Yee for y-cruncher [Yee19] claimed not to outperform se-
quential add-carry instructions for addition on large numbers. Consequently, we
opted to benchmark our performance primarily against the GMP, which offers one
of the fastest single-core, non-SIMD ([SIM]), leveraging carefully architecture-tuned
optimized assembly routines. We benchmarked against the latest available GMP
version 6.3.0. We installed the relevant GMP developer packages on the test system
and invoked the corresponding functions of the GMP API from C code.

We acknowledge that hand-written architecture-fine-tuned assemblies are hard
to beat with code generated by a compiler that works for generalized cases across ar-
chitectures. To get a better idea of the performance gains through vectorization over
different operand sizes, we also compared our vectorized implementation against a
non-vectorized single-threaded implementation of the same code.

In our benchmarking process, we concentrate on measuring the individual ad-
ditions for various bit sizes. We recorded each addition’s execution time, through-
put and some other performance metrics across different bit sizes on the Intel Xeon
E-2314 CPU. Our results were compared with existing alternatives from GMP and
our non-vectorized baseline code. We initialized the variables from the strings and
did not consider initialization in the measurements. We measured only the tim-
ing of the function call that computes the addition; in our case, pml_add() for PML
Add and baseline_add() for baseline, and for GMP, we called the mpz_add() func-
tion from three separate C programs. We used GMPbench’s strategy to calibrate the
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CPU Speed and extract the timings and throughput accordingly. The measurement
technique is briefly described in Appendix A.

As we already mentioned, phase 4 of the PML Add was never triggered with
the extensive set of randomly generated test cases. To get an overview of the per-
formance for inputs triggering phase 4, we separately passed through some test
cases that trigger phase 4 always for every chunk of eight 64-bit elements for the
operands. Thus, the comparison in the following sections contains a total of four
models: Baseline (non-vectorized) implementation of PML Add, GMP’s Add, PML
Add, and PML Add Worst. The PML Add Worst is the version that, after the compu-
tation of phases 1 to 3, triggers phase 4 and processes the computations within that
block. In contrast, the usual PML Add takes all the random inputs and never gets
triggered into phase 4. We randomly read the string operands from the randomly
generated test case files.

Execution Time: Figure 3.2 shows the best measured execution time of our final
implementation of PML Add (8) in comparison with GMP’s Addition function call,
the baseline Addition and PML Add Worst over data sizes ranging from 256-bit to
131072-bit on the Intel Xeon E-2314. The red line depicts GMP_ADD timings in ns,
teal green is for PML_ADD, lighter green denotes the PML Addition Worst Case,
and blue highlights the execution timings for the baseline non-AVX version. We also
listed out the speed-ups inside the plot. The X-axis denotes the bit sizes, and the Y-
axis is for the Execution Time in nanoseconds, and is on a log10 scale. We plotted the
timings for 256-, 512-, 1024-, 2048-, 4096-, 8192-, 16384-, 32768-, 65536- and 131072-bit
sized operands.

With PML Add, we achieve a 2.24x speed-up over GMP with 65,536-bit operands
and consistently maintain over 1.8x speed-up for operands larger than 2,048 bits,
reaching near 2x speed-up beyond 8,192 bits. In contrast, when compared to the
baseline implementation, we record over 6x speed-up for 65,536-bit and 1,31,072-bit
operands and consistently achieve a near 5x speed-up for operands larger than 4,096
bits. However, it is worth noting that, even when phase 4 is triggered as with PML
Add (Worst Case), we are still faster than GMP except for 1,31,072 bits. In compari-
son to GMP, with PML Add (Worst Case), we achieve the highest performance gains
for 512-bit, a 2.11x speed up, and the performance gains slowly reduce. However, on
average, we are still getting 1.38x speed up. Thus, for most possible cases, working
with large random number additions, we can safely say we can achieve nearly 2.06x
speed up on average in comparison to GMP, and in rare cases, we may be matching
GMP or be slightly higher.

Throughput: We also measured the throughput of our PML Add implementation
(including Worst Case) against the GMP, using GMPbench’s technique mentioned in
Appendix A. The throughput of PML Add is in line with the execution time. We’re
achieving up to 2.24 times the throughput of GMP Add for 65536-bit and constantly
ranging above 1.8x for larger operands. And a consistent throughput gain of over 5x
in comparison with the baseline. For 8192 bits, we see the highest throughput gain,
6.69x. Notably, the PML Add variant, which goes through phase 4, is still faster than
GMP for most operands and catching up with GMP for larger operands.

Table 5.3 in Chapter 5 summarizes the throughput comparison for various operand
sizes across all the models.
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Performance Metrics: In addition to execution time and throughput, we also recorded
some other performance metrics of our implementation (both regular and worst
case) compared to GMP and the baseline, mainly: Ticks and User Instruction count.
We have not mentioned the page faults as the largest operand size, i.e. 131072-bit,
can easily be referred through one page. Also, with the AVX512 approach, there
are not many comparable cache benefits, as all the variants use a similar contigu-
ous array structure for limb storage and fetch the limbs in a similar fashion. We
used per f _event_open and RDTSC(P) ticks (refer to A) to measure these metrics dur-
ing actual runs, rather than through simulators, to gain better insights into real-life
workloads. We have listed out the performance metrics: For regular, non-phase-4
trigger cases, on average, PML Add implementation has nearly 37% less user in-
struction counts than GMP Add and nearly 75% less than the baseline. But for worst
cases, PML Add (Worst Case line) has nearly 4% fewer user instructions than GMP
and 65% fewer user instruction counts than baseline.

On the other hand, PML Add has nearly 55% fewer tick counts when compared
to GMP and nearly 84% fewer tick counts than the baseline implementation. In
worst cases, it still has fewer ticks, ranging between 15% and 27% improvement.
Notably, both the tick count and user instruction counts are proportionally in line
with the execution time, except that for 1,31,072 bits, we were seeing a degradation
in the performance gain in execution time, but both user instruction counts and the
ticks do not indicate any performance degradation (similar user instruction counts
and 1.4x performance gains in terms of ticks).

In chapter 5, the Table 5.4 summarizes the user instruction count comparison,
and Table 5.2 summarizes the ticks comparison for all the models on Intel Xeon E-
2314.
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FIGURE 3.2: Timing comparison of PML Add, PML Add Worst, Base-
line Add, and GMP Add for various data sizes on Intel Xeon E-2314
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Chapter 4

Parallelizing the Subtraction of
Large Integers

The content of the chapter is as follows: We first present our approach for paralleliz-
ing subtraction on large random integers. After that, we discuss the final implemen-
tation, followed by the evaluation of it.

4.1 Parallel Multi-phase Subtraction Algorithm

. Subtraction on large numbers is similar to performing addition. However, the or-
der of the operands might be crucial. In this work, we assume the first operand, let’s
say X, is always greater than or equal to the second operand, say Y, while perform-
ing X − Y. However, in cases where X is smaller than Y, we can swap the numbers
and return the difference between the two numbers and extra information contain-
ing the sign of the result, an approach similar to GMP’s subtraction implementation.

4.1.1 Proposed Subtraction Algorithm

We propose a parallel subtraction algorithm, named Parallel Multi-Stage Large-Nu-
mber Subtraction (PML Sub), shown in algorithm 9, which operates in four phases,
similar to the addition algorithm we proposed. In Phase 1, we simultaneously sub-
tract Yi from Xi without accounting for borrow or underflow. Then, in Phase 2, we
generate the borrows and adjust the underflowed subs, followed by left-shifting the
borrow values. Phase 3 adjusts the borrows in the respective positions in parallel.
In rare cases, Phase 4 eventually adjusts the intermediate subs if any borrow was
generated during Phase 3.

4.2 Implementation of Proposed PML Sub using AVX-512

For parallelization of large number subtraction, we utilized the exact saturated 64-bit
limb-based data representation of addition and used the AVX-512 C intrinsics for
the final implementation. We also had a similar set of two sub-optimal implementa-
tions for subtraction as with addition. We only listed out the final implementation
approach here. Instead of carry propagation, we generated borrow propagation and
accordingly designed the implementations. We have only shown the final 64-bit
hex-based PML Sub implementation 10.
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Algorithm 9: Proposed Parallel Multi-Stage Large-Number Subtraction
(PML Sub)

Input : Two n-digit numbers X and Y in base B, split into m blocks of K
digits each, where Xi, Yi are the i-th blocks and X0, Y0 are the least
significant blocks. Also, 0 ≤ Xi, Yi ≤ BK − 1 and X > Y.

Output: Sub S = Sm−1 . . . S0, where S0 is the least significant block.

// Phase 1: Compute Intermediate Subs (Parallel)

for i← 0 to m− 1 in parallel do
Si ← Xi −Yi

// Phase 2: Detect Borrows (Parallel)

borrow_detect← false; // Flag for borrow presence

for i← 0 to m− 1 in parallel do
if Si < 0 then

Bi ← 1
Si ← Si − BK

borrow_detect← true; // Mark borrow existence

B′i+1 = Bi, ∀ 0 ≤ i < m− 1, B′0 = 0
// Phase 3: First Round of Borrow Adjust (Parallel)

if borrow_detect = true then
borrow_detect← f alse
for i← 0 to m− 1 in parallel do

if B′i = 1 then
Si ← Si − 1
if Si = −1 then

borrow_detect← true
B′i ← 1
Si ← BK − 1

else
B′i ← 0

// Phase 4: Borrow Propagation (Detect Min Blocks and Adjust Accordingly)

if borrow_detect = true then
B_mask← B′i for all i ; // Initialize borrow mask

for i← 0 to m− 1 in parallel do
min_maski ← (Si = 0) ; // Check if block is at min value

B_mask← B_mask≪ 1 B_mask← B_mask + min_mask
min_mask← B_mask⊕min_mask ; // XOR operation

for i← 0 to m− 1 in parallel do
if B_maski = 1 then

Si ← Si − 1 if Si < 0 then
Si ← Si + BK

return S;
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Algorithm 10: Outline of implementation of PML Sub using AVX512
Data: Arrays x and y of 64-bit elements, output array s, size n (multiple of 8) and

x > y
Result: s = x− y
b_in← 0, b_out← 0 ; // Initialize borrow variables
for i← n - 8 downto 0 step 8 do

b_in← b_out ; // Propagate borrow from previous round
// Phase 1: Parallel Subtraction
x_vec← Load eight 64-bit elements from x[i] ;
y_vec← Load eight 64-bit elements from y[i] ;
r_vec← x_vec - y_vec ; // Subtract eight elements in parallel
// Phase 2: Borrow Detection
borrow_mask← Generate 8-bit mask where y_vec > x_vec ; // Detect borrows
b_out← borrow_mask ; // Keep borrow for next round
borrow_mask← borrow_mask » 1 ; // Shift right (little-endian order)
borrow_mask← borrow_mask | b_in « 7 ; // Account for borrow-in to most
significant lane

// Phase 3: Adjust Borrows
borrow_vec← Set 1s in lanes based on borrow_mask ;
r_vec_new← r_vec - borrow_vec ; // Adjust for borrows
mask_new← Generate 8-bit mask where r_vec_new > r_vec ; // Check new
borrows

r_vec← r_vec_new ;
// Phase 4: Handle Further Borrows
if mask_new is non-zero then

mask_new← mask_new « 1 ; // Shift borrows
eq_mask← Generate 8-bit mask where r_vec = all-zeros ; // Detect
all-zeros

mask_new← mask_new + eq_mask ; // Combine masks
b_out← b_out | (mask_new » 8) ; // Update borrow out
sub_mask← mask_new XOR eq_mask ; // Compute subtraction mask
r_vec← Add all-ones into r_vec in lanes where sub_mask is set ; // Adjust
result with the help of wrap around

// Store Results
Store eight 64-bit elements from r_vec to s[i] ;

In Phase 3, instead of preparing Ones inside the borrow_vec, we can choose to
add the values with maximum-base based on the borrow_mask, similar to what we
mentioned in addition, which will minimize the number of operations (similar to the
Kogge-Stone technique). That is, add all-ones into r_vec in lanes where borrow_mask
is set. We performed the final implementation exactly.

In contrast to addition, subtraction does not need to pass on the borrow-out in-
formation, as we are always assuming X is greater than or equal to Y.

Instead of using the _mm512_add_epi64 in PML Sub, we used the _mm512_sub_epi64
flag from AVX512-F, as compared to PML Add, for compilation.s

The implementation of the PLM Sub follows a programming approach similar
to that of addition. It utilizes a macro-based vectorized kernel, specifically designed
for an AVX-512 type, with operands grouped into equal-sized multiples of 8 64-
bit limbs. For the 256-bit subtraction, we have employed AVX2. It is important to
note that this implementation calculates the absolute difference between x and y,
assuming that x is greater than y. If x is less than y, we swap the pointers for x and y.
In addition to the result, we indicate that the difference is negative using the limb_t
structure.
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4.3 Evaluation

Similar to Addition, the core questions we are trying to answer here are the follow-
ing:

1. Are the computations yielding correct results?

2. Are we getting any performance improvements, in terms of execution time,
instruction count, and CPU Cycles, over GMP?

3. How much performance gain do we get compared to GMP for subtraction with
different data sizes?

4. How much performance gain are we observing with vectorization as com-
pared to a non-vectorized baseline implementation?

For the vectorized C code implementation of subtraction (PML Sub), we use the
same set of GCC compiler flags:

-mavx512f -mavx512vl -O1

Also, we compiled the baseline variant using the O1 flag. The correctness check
and benchmarking were conducted on the same Intel Xeon E-2314 CPU with the
same configuration as mentioned in chapter 3 for addition.

4.3.1 Correctness

To validate the correctness of our PML Sub implementation, we generated multiple
sets of 100,000 random test cases using Python’s random module and the gmpy2 li-
brary, similar to addition. These tests were conducted over a range of operand sizes,
from 256 bits to 1,31,072 bits. We ensured the correctness of the outputs by compar-
ing them against precomputed values using gmpy2 for each test case, confirming
correctness across all scenarios. Additionally, for the subtraction operation, phase 4
of the algorithm was never executed for any test case. For thoroughness, we manu-
ally curated some test cases that would trigger this phase and found that the results
matched the pre-computed values.

4.3.2 Performance Compared to GMP and Baseline

Similar to Addition, we opted to benchmark our performance primarily against the
latest GMP version 6.3.0. In total, the performance comparison had a total of four
models: PML Sub, PML Sub Worst (phase 4 triggering cases), Baseline Sub and GMP
Sub. We measured and compared the execution time, throughput, ticks, user instruc-
tion count and L1D Cache miss rate among these four models.

Execution Time: We compared the execution time of our implementation (10) of
PML Sub and PML Sub (Worst Case) with GMP Sub and the baseline implementa-
tion. Figure 4.1 shows the best measured execution times for various operand sizes.
In comparison to GMP, for the random implementation, we are achieving a speed-
up ranging from 1.92x to 2.97x for various data sizes across CPUs. We are observing
the highest performance gains of up to 2.97x the performance for 256 bits and con-
sistently exceeding 2x for most operands. In contrast, relative to baseline implemen-
tation, we achieve speed-ups ranging from 2.40x to 5.31x and are constantly above
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FIGURE 4.1: Timing comparison of PML Sub with GMP Sub for vari-
ous data sizes on Intel Xeon E-2314

4x from 2048-bit operand sizes. With the Phase 4 test cases, PML Sub is still compa-
rable to GMP, ranging between 1.08x and 2.32x. As the operand size increases, the
performance becomes closer to GMP.

Performance Metrics: Compared to GMP Sub, we see almost a 45% reduction in
user instruction counts for PML Sub for random test cases. And in the worst cases,
we see nearly 15% reduction in user instruction counts. Similarly, ticks are nearly
64% less with PML Sub compared to GMP Sub for random cases and nearly 36%
reduction for worst cases.

We have listed out the statistics of performance metrics for subtraction for all the
models in Chapter 5; Table 5.4 shows the user instruction count comparison, and
Table 5.2 shows the ticks comparison.

Throughput: Table 5.3 in Chapter 5 shows the throughput comparison on differ-
ent operand sizes. Throughputs are in line with the execution time, similar to addi-
tion. Compared with GMP, we observe the highest throughput gain of 3x, and the
throughput ranges above 2x for larger operands.
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Chapter 5

Approximate Parallel Addition and
Subtraction for Large Integers

5.1 Chained Carry Propagation

In most cases of adding two large numbers using PML Add (Algorithm 7 in Chap-
ter 3), when we group a larger number of bits within each limb (using a large K), the
entire computation can often be completed by Phase 3, making Phase 4 unnecessary.
After initially adding all the limbs in Phase 1, further carry propagation should only
occur if we add 1 to intermediate sums that have reached their maximum in Phase 3.
We refer to this as chained carry propagation, as it may require additional adjustments
depending on the maxed-out blocks. In Phase 4, we are simply propagating the
carries that arise from adding 1 to the maxed-out limbs.

We now argue that, for most large-number arithmetic use cases, the occurrence
of Phase 4, or chained carry propagation, is rare. This is primarily because large
number additions are typically done with random numbers, making it uncommon
for the sum of two limbs Xi and Yi to equal BK − 1 (the maximum base value), espe-
cially when K is sufficiently large.

5.1.1 Likelihood of Chained Carry Propagation

Let’s illustrate the scenario potentially leading to chained carry propagation with an
example.

Example 5.1.1.1.

Assume we are working with B=10, K=2.
Limb indices: 0 1 2
Number X: 45 23 87
Number Y: 11 76 56
---------------------------
Phase 1 (Initial Sum S = X + Y mod 100):
S: 56 99 43
Phase 2 (Calculate & Shift Carries from Phase 1):
Carries (C): 0 0 1 (from 56, 99, 143)
Shifted (C): 0 1 0 (carry into next limb)
Phase 3 (Add Shifted Carries S = S + C):
S: 56 99 43
C: + 0 1 0
---------------------------
Result (S): 56 00 43
New Carries(C): 0 1 0
---------------------------
We propagate further carries in Phase 4.
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We can observe that in order to trigger Phase 4, i.e., chained carry propagation,
certain conditions would be needed: a limb Sp produces a carry after Phase 1 and its
preceding limb Sp−1 should be equal to BK − 1, where K is the limb size and B is the
base of the digits. Below proof examines how likely these conditions are to coincide.

Proof:

Let:
M = {Sp−1 = BK − 1}, N = {Sp ≥ BK}

where Si = Xi + Yi, and Xi, Yi are independent, uniformly random variables over
[0, BK − 1], with BK possible values per limb.

Probability of M:
Consider Sp−1 = Xp−1 + Yp−1 = BK − 1
Number of pairs: For Xp−1 = 0 to BK − 1, Yp−1 = BK − 1− Xp−1, giving BK pairs.
Total pairs: (BK)2

Pr[M] =
BK

(BK)2 =
1

BK

Probability of N:
We compute Pr[N] = Pr[Sp ≥ BK], where Sp = Xp + Yp, with Xp and Yp independent
and uniformly distributed over [0, BK − 1].
Range of Sp: Since Xp, Yp ∈ {0, 1, . . . , BK − 1}, the sum Sp ranges from 0 to 2BK − 2.
Total number of pairs: There are (BK)2 possible pairs (Xp, Yp).
Favourable pairs: We need Xp + Yp ≥ BK.
For each Xp = x:

Yp ≥ BK − x and Yp ≤ BK − 1

The number of Yp satisfying this is:{
0 if x = 0,
x if 1 ≤ x ≤ BK − 1

Thus, the total number of favourable pairs is:

BK−1

∑
x=1

x =
(BK − 1)BK

2

Probability calculation:

Pr[N] =
(BK−1)BK

2
(BK)2 =

BK − 1
2BK

Event M ∩ N:
Sequential propagation (Phase 4) occurs when M ∩ N holds, a saturated Sp−1 and a
carry from limb Sp, potentially causing further carries in a carry-adjustment phase.
Since Xi, Yi are independent across limbs, M and N are independent.

Pr[M ∩ N] = Pr[M] · Pr[N] =

(
1

BK

)(
BK − 1

2BK

)
=

BK − 1
2(BK)2

Conditional Probability:

Pr[M | N] =
Pr[M ∩ N]

Pr[N]
=

BK−1
2(BK)2

BK−1
2BK

=
1

BK
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Thus, given a carry from Sp, the chance Sp−1 = BK − 1 remains 1
BK , a event that

decreases exponentially with K, making sequential propagation unlikely in crypto-
graphic applications with large K and randomly generated numbers. Hence, the
probability of not needing sequential propagation for the number patterns is approx-
imately 0.99999999999999999994578989137572 if we group 64 bits or 16 hexadecimal
digits together (1/264 or 1/1616 = 5.42e-20).

It’s important to note that this rare chained carry propagation scenario we ob-
served during addition also applies to subtraction with sufficiently large K. Instead
of encountering a rare situation where a limb is maxed out, we may have a rare
occurrence of a limb being zero after the Phase 1 subtraction. Consequently, the like-
lihood of Chained Borrow Generation happening is also 1/BK. As a result, triggering
Phase 4 of the PML Sub is quite rare as well.

Based on this proof, we can safely say only with 1/264 probability that Phase 4
gets triggered for the PML Add and PML Sub. In other words, when working with
64-bit saturated bases for PML Add and PML Sub, there is merely a 5.42× 10−18 %
chance that the current limb addition or subtraction generating a carry or borrow,
along with its preceding limb operation will be maxed out or result in zero.

However, the conditional check to enter the Phase 4 code block is executed for
all operands in PML Add and PML Sub to ensure correctness across all cases. Con-
sequently, if certain applications like machine learning, image processing, scientific
computing and computer vision can operate with approximate calculations ([Jia+20;
AKL18]), they may entirely skip Phase 4 when large-number addition and subtrac-
tion are required. By doing so, they can avoid executing two key computations for
every 512-bit data chunk: checking whether a carry or borrow has been generated
after Phase 3 and determining whether to enter Phase 4. As a result, for use cases
where approximation is acceptable, performance can further improve with larger
operands.

We will approach this by implementing a three-phase operation:

• Phase 1: The limbs of both operands will be added or subtracted in parallel
without considering any potential carries or borrows.

• Phase 2: Carries or borrows will be detected simultaneously across all limbs.

• Phase 3: If any intermediate limb results in a carry or borrow, it will be added
to or subtracted from its preceding limb in parallel, simulating the necessary
adjustments for the carry or borrow.

Note that, although we are approximating here, for a given a and b, we are not
modifying or transforming the original a and b. Their computation with this ap-
proach will always yield the same result; thus, this is deterministic. With this ap-
proach, we may rarely arrive at a computation where some resulting limb will have
a difference of value one from the intended correct value and in even rarer cases, like
fully chained propagation across all the limbs, the difference one will be in terms of
wrap-around.
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Example 5.1.1.2.
Long Chained Carry Propagation: Consider the following worst-case scenario: In this
case, most of the blocks are maxed out after Phase 3, leading to carry propagation from
the least significant limb to the most significant limb.

• Let a = 999 . . . 9999

• Let b = 000 . . . 0001

Suppose we group k = 2 digits together. We can represent the numbers as:

a′ = 99 99 . . . 99 99 99︸ ︷︷ ︸
Grouped representation

b′ = 00 00 . . . 00 00 01︸ ︷︷ ︸
Grouped representation

The Phase 1 addition yields:

Partial Sum = 99, 99, 99, . . . , 99, 99, 100

Phase 2 detects the below carry values:

Carries = 0, 0, 0, . . . , 0, 0, 1

We will add up the carries to the preceding limbs (Phase 3):

Intermediate Sum = 99, 99, 99, . . . , 99, 00, 00

Carries = 0, 0, 0, . . . , 0, 1, 0

After Phase 3, we begin to detect carries again. In this situation, we need to propagate the
carry in a chained manner repeatedly until no more carries are generated. However, as
we have observed regarding the likelihood of chained propagation, when K is sufficiently
large, the probability of encountering maxed-out limbs becomes rare. As a result, this
type of long-chained carry propagation is much rarer in large-number addition use cases.
Nevertheless, in such cases, Phase 4 in the original PML Add will still manage to perform
the remaining carry propagation with some amount of performance reduction.

Next, we describe the Parallel Multi-phase Approximate Addition and Subtrac-
tion algorithms alongside their implementation with AVX-512, followed by the ob-
servations on performance.

We omitted the carry checking after phase 3, followed by the phase 4 adjust-
ment block from the original proposed PML Add algorithm 7. Algorithm 11 depicts
our approximation approach for large number addition. Similarly, the implementa-
tion of the PML Add (Approx) (Algorithm 12) omits the carry check after phase 3
and phase 4 adjustment of the original implementation of PML Add (implementa-
tion 8). Thus, the implementation successfully eliminates most of the operations on
the masked registers.
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5.2 Parallel Multi-phase Approximate Addition

Algorithm 11: Proposed Parallel Multi-Stage Large-Number Approximate
Addition (PML Add (Approx)) Algorithm

Input : Two n-digit numbers X and Y in base B, split into m blocks of K digits each,
where Xi, Yi are the i-th blocks and X0, Y0 are the least significant blocks.
Also, 0 ≤ Xi, Yi ≤ BK − 1.

Output: Sum S = Sp−1 . . . S0, where S0 is the least significant block.

// Phase 1: Compute Intermediate Sums (Parallel)
for i← 0 to m− 1 in parallel do

Si ← Xi + Yi

// Phase 2: Detect Carries (Parallel)
carry_detect← false; // Flag for carry presence
for i← 0 to m− 1 in parallel do

if Si >= BK then
Ci ← 1
Si ← Si − BK

carry_detect← true; // Mark carry existence

C′i+1 = Ci, ∀ 0 ≤ i < m− 1, C′0 = 0
// Phase 3: First Round of Carry Addition (Parallel)
if carry_detect = true then

for i← 0 to m− 1 in parallel do
if C′i = 1 then

Si ← Si + 1; // Add carry, modulo 232

Return S;

Algorithm 12: Outline of Implementation of PML Add (Approx) using
AVX512

Data: Arrays x and y of 64-bit elements, output array s, size n (multiple of 8)
Result: s = x + y
c_in← 0, c_out← 0 ; // Initialize carry variables
for i← 0 to n - 8 step 8 do

c_in← c_out ; // Propagate carry from previous round
// Phase 1: Parallel Addition
x_vec← Load eight 64-bit elements from x[i] ;
y_vec← Load eight 64-bit elements from y[i] ;
r_vec← x_vec + y_vec ; // Add eight elements in parallel
// Phase 2: Carry Detection
carry_mask← Generate 8-bit mask where r_vec < x_vec ; // Detect carries
c_out← carry_mask » 7 ; // Extract highest carry
carry_mask← carry_mask « 1 ; // Shift left
carry_mask← carry_mask | c_in ; // Combine with input carry
// Phase 3: Adjust Carries
carry_vec← Set 1s in lanes based on carry_mask ; // Create carry vector
r_vec_new← r_vec + carry_vec ; // Apply carries
r_vec← r_vec_new ;
// Store Results
Store eight 64-bit elements from r_vec to s[i] ;

result.carry← c_out ; // Store final carry
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5.3 Parallel Multi-phase Approximate Subtraction

Similar to PML Add (Approx), we omitted the borrow checking after phase 3, fol-
lowed by the phase 4 adjustment block from the original proposed PML Sub algo-
rithm 9. Our approximation approach for large number subtraction is described in
algorithm 13.

Implementation outline 14 shows our implementation approach for PML Sub
(Approx) (Algorithm 13) using AVX512 intrinsics.

Algorithm 13: Proposed Parallel Multi-Stage Large-Number Approximate
Subtraction (PML Sub (Approx))

Input : Two n-digit numbers X and Y in base B, split into m blocks of K
digits each, where Xi, Yi are the i-th blocks and X0, Y0 are the least
significant blocks. Also, 0 ≤ Xi, Yi ≤ BK − 1 and X > Y.

Output: Sub S = Sm−1 . . . S0, where S0 is the least significant block.

// Phase 1: Compute Intermediate Subs (Parallel)

for i← 0 to m− 1 in parallel do
Si ← Xi −Yi

// Phase 2: Detect Borrows (Parallel)

borrow_detect← false; // Flag for borrow presence

for i← 0 to m− 1 in parallel do
if Si < 0 then

Bi ← 1
Si ← Si − BK

borrow_detect← true; // Mark borrow existence

B′i+1 = Bi, ∀ 0 ≤ i < m− 1, B′0 = 0
// Phase 3: First Round of Borrow Adjust (Parallel)

if borrow_detect = true then
borrow_detect← f alse
for i← 0 to m− 1 in parallel do

if B′i = 1 then
Si ← Si − 1

return S;
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Algorithm 14: Outline of Implementation of PML Sub (Approx) using
AVX512

Data: Arrays x and y of 64-bit elements, output array s, size n (multiple of 8) and
x > y

Result: s = x− y
b_in← 0, b_out← 0 ; // Initialize borrow variables
for i← n - 8 downto 0 step 8 do

b_in← b_out ; // Propagate borrow from previous round
// Phase 1: Parallel Subtraction
x_vec← Load eight 64-bit elements from x[i] ;
y_vec← Load eight 64-bit elements from y[i] ;
r_vec← x_vec - y_vec ; // Subtract eight elements in parallel
// Phase 2: Borrow Detection
borrow_mask← Generate 8-bit mask where y_vec > x_vec ; // Detect borrows
b_out← borrow_mask ; // Keep borrow for next round
borrow_mask← borrow_mask » 1 ; // Shift right (little-endian order)
borrow_mask← borrow_mask | b_in « 7 ; // Account for borrow-in to most
significant lane

// Phase 3: Adjust Borrows
borrow_vec← Set 1s in lanes based on borrow_mask ;
r_vec_new← r_vec - borrow_vec ; // Adjust for borrows
r_vec← r_vec_new ;
// Store Results
Store eight 64-bit elements from r_vec to s[i] ;

5.4 Evaluation

For the approximate versions of addition and subtraction, the core questions we are
trying to answer here are the following:

1. Are the computations yielding correct results for most cases?

2. Are we getting any performance improvements, in terms of execution time,
instruction count, and CPU Cycles, over the regular variant of PML?

3. How much performance gain do we get compared to GMP and regular PML
with different data sizes?

For the vectorized C code implementation, we use the same set of GCC compiler
flags:

-mavx512f -mavx512vl -O1

Also, we compiled the baseline variant using the O1 flag.
The correctness check and benchmarking were conducted on the same Intel Xeon

E-2314 CPU with the same configuration as mentioned in chapter 3 for addition.

5.4.1 Correctness

Luckily, the implementation of PML Add (Approx) and PML Sub (Approx) passed
all the lakhs-and-lakhs of the test cases we generated for the original PML Add and
PML Sub implementation, possibly due to the rarity of occurring test cases that gen-
erate chained dependency. However, when such cases may arise, our computation
will hold near computations, a difference of value one, from the intended ones.
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FIGURE 5.1: Timing comparison of PML Add (Approx) with GMP
and PML Add for various data sizes on Intel Xeon E-2314

5.4.2 Performance Compared to GMP and PML Add

Below, we compare the performance metrics of the approximate versions with those
of the GMP and the original versions.

Execution Time: In terms of execution time, with approximate additions, we get
an average of 2.51x speed-up compared to GMP and a 1.23x speed-up compared
to the original addition implementation. To put it in contrast, the original addition
is 2.06x faster on average than the GMP. Figure 5.1 shows the best execution time
comparison of the three models. On the other hand, the execution time speed-up
for the approximate version of subtraction, as demonstrated in Figure 5.2, is 2.80x
as compared to GMP and 1.21x faster than the original version of subtraction. We
also notice that the speed-ups for the approximate versions are higher for larger
operands, as we execute fewer carry or borrow checks for every 512-bit of data we
process.

Performance Metrics: We have also listed the performance metric comparison re-
garding user instruction count and ticks. The ticks for the original addition imple-
mentation are near 335, whereas the approximate version consumes 266 ticks on
average for operand sizes ranging between 256 bits and 131072 bits — a reduction of
24%. In terms of user instruction count, we observe an average 18% reduction for the
same set of operand sizes between the approximate version (1140 user instructions)
and the original version of addition (934 user instructions). Table 5.4 and 5.2 show
the comparison of these performance metrics for addition across all the models. On
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FIGURE 5.2: Timing comparison of PML Sub (Approx) with GMP and
PML Sub for various data sizes on Intel Xeon E-2314

the other hand, for subtraction, we observe an average of 20% reduction for ticks
and 28% for user instruction counts with the approximate version compared to the
original PML Sub implementation (refer Tables: 5.4 and 5.8).

Throughput: Similarly, we have listed out the throughput comparison of the three
models for addition and subtraction in Tables 5.3 and 5.6.

Table 5.1 presents a summary of statistics for all the models compared regarding
addition across various operand sizes.

Below we have listed tables that precisely measure the respective values using
the methods specified in Appendix A. We conducted ten individual measurements
for each operand size across each model and have presented the statistics, including
the minimum, maximum, average, and standard deviation for each value listed.

TABLE 5.1: Summarized Execution Time Statistics of Addition by
Operand Size Across Models (in ns)

Size Baseline GMP PML Add (Worst) PML Add PML Add (Approx)

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 9.0 12.7 10.6 1.24 8.3 8.6 8.5 0.14 4.7 4.7 4.7 0.00 3.3 3.3 3.3 0.00 3.2 3.2 3.2 0.00
512 11.1 12.7 12.2 0.77 9.7 9.8 9.8 0.04 4.6 6.3 4.9 0.59 3.9 3.9 3.9 0.00 3.4 3.4 3.4 0.00

1024 21.0 23.0 21.8 0.91 12.1 13.8 12.4 0.50 7.5 9.7 7.9 0.71 5.7 5.7 5.7 0.00 4.7 4.7 4.7 0.00
2048 46.8 49.2 47.5 1.02 17.9 18.1 18.0 0.07 14.0 15.1 14.1 0.34 9.1 12.2 10.0 1.06 7.5 7.7 7.5 0.06
4096 104.1 106.3 105.2 1.15 31.0 32.2 31.3 0.38 27.2 28.2 27.3 0.31 17.2 19.0 17.7 0.66 13.5 13.9 13.6 0.12
8192 218.7 221.0 219.6 1.16 60.6 61.0 60.8 0.15 58.8 61.5 59.6 0.73 32.6 33.1 32.7 0.15 25.5 26.1 25.8 0.23

16 384 454.9 457.8 456.1 1.35 150.9 151.2 151.0 0.09 125.6 126.5 125.9 0.24 78.1 78.9 78.3 0.28 62.0 62.4 62.2 0.13
32 768 913.9 922.4 916.2 2.44 335.1 672.7 369.3 106.61 244.2 429.5 263.0 58.50 153.6 154.3 153.8 0.21 119.9 120.3 120.1 0.11
65 536 1832.8 1838.7 1836.5 1.86 664.9 1005.4 700.1 107.27 478.6 480.8 479.8 0.69 296.6 297.8 297.4 0.34 230.2 230.7 230.4 0.13

131 072 3680.8 3696.4 3687.2 4.88 904.8 921.9 914.0 5.39 955.2 1153.7 996.7 81.89 589.6 594.3 591.7 1.61 457.3 459.1 457.9 0.56
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TABLE 5.2: Summarized Ticks Statistics of Addition by Operand Size
Across Models

Size Baseline GMP PML Add (Worst) PML Add PML Add (Approx)

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 25 31 29 2.64 23 24 24 0.42 13 16 14 1.02 10 10 10 0.01 9 9 9 0.00
512 31 36 34 2.48 27 28 28 0.09 13 13 13 0.03 11 12 11 0.42 10 11 10 0.30

1024 59 70 62 4.15 34 35 35 0.33 22 22 22 0.04 16 23 18 2.84 13 15 13 0.51
2048 132 145 136 4.77 50 52 51 0.49 40 43 40 1.06 26 35 27 2.87 21 22 22 0.34
4096 293 300 296 3.38 87 89 88 0.47 77 79 77 0.80 48 52 49 1.11 38 38 38 0.08
8192 615 627 619 3.88 171 172 171 0.36 168 193 173 9.11 92 96 93 1.71 72 74 72 0.85

16 384 1281 1295 1284 4.94 425 429 426 1.33 354 357 355 1.18 220 222 221 0.66 172 176 174 1.35
32 768 2573 2862 2620 93.58 943 947 945 1.29 687 691 688 1.44 433 434 433 0.24 338 342 339 1.21
65 536 5160 5408 5196 75.40 1872 1881 1876 2.83 1347 1355 1351 2.74 836 841 838 1.29 648 650 649 0.54

131 072 10 361 10 416 10 382 16.86 3781 3804 3794 8.02 2682 2718 2698 11.48 1658 1678 1669 6.63 1287 1293 1289 1.68

TABLE 5.3: Summarized Throughput Statistics of Addition by
Operand Size Across Models (in million OP/s)

Size Baseline GMP PML Add (Worst) PML Add PML Add Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 78.90 110.80 95.71 11.21 116.05 120.04 117.63 2.04 213.20 213.31 213.25 0.04 253.95 253.97 253.96 0.01 253.95 253.99 253.97 0.01
512 77.10 90.46 81.13 6.42 101.95 102.68 102.25 0.33 157.93 206.55 198.61 16.96 232.77 232.80 232.79 0.01 285.67 285.87 285.77 0.06

1024 43.35 47.49 45.84 1.96 72.16 82.23 80.61 3.06 102.05 121.53 119.05 6.19 174.46 174.55 174.53 0.02 209.21 213.25 212.83 1.27
2048 20.30 21.30 20.99 0.44 55.15 55.73 55.50 0.20 66.08 70.91 70.42 1.53 81.66 108.66 100.22 9.78 130.40 132.73 132.48 0.73
4096 9.39 9.60 9.50 0.11 31.19 32.21 32.01 0.34 35.24 36.57 36.42 0.42 52.19 58.05 56.57 2.16 72.11 74.56 74.15 0.76
8192 4.52 4.57 4.55 0.02 16.41 16.48 16.45 0.03 16.24 16.69 16.61 0.13 30.16 30.60 30.55 0.14 38.61 39.45 39.08 0.36

16 384 2.18 2.20 2.19 0.01 6.62 6.62 6.62 0.00 7.87 7.93 7.93 0.02 12.65 12.79 12.75 0.05 16.00 16.23 16.16 0.07
32 768 1.08 1.09 1.09 0.00 1.49 2.98 2.83 0.47 2.33 4.09 3.91 0.56 6.47 6.50 6.49 0.01 8.29 8.31 8.30 0.00
65 536 0.54 0.54 0.54 0.00 1.00 1.50 1.45 0.16 2.08 2.09 2.08 0.00 3.35 3.36 3.36 0.00 4.33 4.33 4.33 0.00

131 072 0.27 0.27 0.27 0.00 1.09 1.10 1.09 0.01 0.87 1.05 1.01 0.08 1.68 1.69 1.69 0.00 2.18 2.19 2.18 0.00

TABLE 5.4: Summarized User Instructions Statistics of Addition by
Operand Size Across Models

Size Baseline GMP PML Add (Worst) PML Add PML Add Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 96 123 115 13.04 113 113 113 0.00 50 50 50 0.00 34 34 34 0.00 25 25 25 0.00
512 134 161 148 14.23 130 130 130 0.00 56 56 56 0.00 48 48 48 0.00 41 41 41 0.00

1024 237 264 248 13.94 164 164 164 0.00 90 90 90 0.00 70 70 70 0.00 59 59 59 0.00
2048 443 470 457 14.23 232 232 232 0.00 158 158 158 0.00 114 114 114 0.00 95 95 95 0.00
4096 855 882 866 13.94 368 368 368 0.00 294 294 294 0.00 202 202 202 0.00 167 167 167 0.00
8192 1679 1706 1690 13.94 640 640 640 0.00 566 566 566 0.00 378 378 378 0.00 311 311 311 0.00

16 384 3327 3354 3335 13.04 1184 1184 1184 0.00 1110 1110 1110 0.00 730 730 730 0.00 599 599 599 0.00
32 768 6623 6650 6639 13.94 2272 2272 2272 0.00 2198 2198 2198 0.00 1434 1434 1434 0.00 1175 1175 1175 0.00
65 536 13 215 13 242 13 226 13.94 4448 4448 4448 0.00 4374 4374 4374 0.00 2842 2842 2842 0.00 2327 2327 2327 0.00

131 072 26 399 26 426 26 410 13.94 8800 8800 8800 0.00 8726 8726 8726 0.00 5658 5658 5658 0.00 4631 4631 4631 0.00

TABLE 5.5: Summarized Execution Time Statistics of Subtraction by
Operand Size Across Models (in ns)

Size Baseline GMP PML Sub (Worst) PML Sub PML Sub Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 7.8 7.8 7.8 0.00 8.6 8.7 8.6 0.05 3.7 4.7 4.3 0.52 2.9 3.6 3.1 0.36 2.9 3.9 3.5 0.52
512 10.8 11.2 10.9 0.19 9.8 11.0 9.9 0.36 5.7 6.6 6.2 0.36 4.5 5.8 5.2 0.67 4.4 5.4 5.1 0.45

1024 19.3 20.2 19.5 0.26 12.3 12.5 12.4 0.08 8.1 9.0 8.5 0.42 6.3 8.1 7.3 0.92 5.5 6.5 5.8 0.47
2048 36.8 37.5 36.9 0.24 18.1 18.4 18.1 0.09 12.9 14.2 13.2 0.39 8.9 10.0 9.5 0.53 7.5 8.4 8.0 0.29
4096 73.4 73.8 73.6 0.18 31.2 32.1 31.4 0.36 25.3 26.7 25.5 0.41 14.6 16.5 15.2 0.75 11.8 12.4 12.0 0.30
8192 148.8 149.9 149.2 0.26 60.4 61.0 60.6 0.18 55.9 59.2 56.8 0.96 28.0 29.2 28.3 0.49 21.3 23.3 21.6 0.72

16 384 306.6 307.8 307.2 0.43 150.5 151.3 150.8 0.25 109.8 112.1 110.1 0.69 65.1 67.8 66.3 0.89 50.3 52.2 51.0 0.68
32 768 610.2 612.0 611.1 0.65 335.0 336.2 335.3 0.42 211.5 221.3 213.2 3.02 124.2 126.5 125.8 0.83 96.6 684.8 156.3 185.6
65 536 1217.8 1222.1 1219.7 1.54 665.9 667.2 666.6 0.46 413.8 423.0 417.7 4.11 237.8 240.3 238.5 1.10 182.0 184.0 182.3 0.60

131 072 2447.3 2459.3 2455.5 4.07 902.5 913.0 907.8 3.87 823.5 843.4 832.8 8.98 470.3 475.8 471.5 1.57 357.1 361.3 358.8 1.21
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TABLE 5.6: Summarized Throughput Statistics of Subtraction by
Operand Size Across Models (in million OP/s)

Size Baseline GMP PML Sub (Worst) PML Sub PML Sub Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 127.92 128.67 128.44 0.36 115.07 116.11 115.63 0.42 199.54 253.46 221.09 27.80 253.95 348.44 310.64 48.77 232.80 310.36 263.82 40.05
512 89.15 91.62 90.87 1.18 91.08 102.41 100.52 3.37 144.73 167.66 151.75 10.91 172.11 212.88 188.62 20.83 164.28 199.33 174.82 16.91

1024 49.25 51.77 50.99 0.74 80.20 80.95 80.50 0.35 104.00 116.83 110.49 6.67 126.02 148.60 135.53 11.15 139.67 164.32 154.45 12.72
2048 26.66 27.07 27.00 0.14 54.34 55.30 55.03 0.29 70.16 76.44 74.83 1.98 99.70 110.24 104.20 5.18 115.20 130.74 118.36 6.51
4096 13.53 13.59 13.55 0.03 31.18 32.06 31.81 0.35 37.10 39.41 39.12 0.72 58.59 67.68 65.40 3.08 75.47 84.17 80.83 3.67
8192 6.66 6.71 6.69 0.01 16.43 16.52 16.48 0.03 16.83 17.64 17.47 0.25 34.10 35.70 35.15 0.59 42.74 46.85 45.99 1.41

16 384 3.25 3.26 3.25 0.00 6.61 6.64 6.63 0.01 8.90 9.09 9.05 0.05 14.78 15.28 15.08 0.17 19.23 19.70 19.55 0.13
32 768 1.63 1.64 1.64 0.00 2.97 2.98 2.98 0.00 4.51 4.72 4.68 0.06 7.90 8.02 7.93 0.05 1.46 10.30 9.32 2.76
65 536 0.82 0.82 0.82 0.00 1.50 1.50 1.50 0.00 2.37 2.42 2.39 0.02 4.16 4.20 4.19 0.02 5.42 5.47 5.47 0.02

131 072 0.41 0.41 0.41 0.00 1.10 1.11 1.10 0.00 1.18 1.21 1.20 0.01 2.10 2.12 2.12 0.01 2.77 2.79 2.78 0.01

TABLE 5.7: Summarized Ticks Statistics of Subtraction by Operand
Size Across Models

Size Baseline GMP PML Sub (Worst) PML Sub PML Sub Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 22 22 22 0.03 24 24 24 0.08 10 13 11 1.29 8 10 9 1.05 8 11 10 1.41
512 30 32 31 0.61 27 28 28 0.19 16 18 17 0.94 13 18 15 2.11 13 15 13 0.93

1024 54 59 56 1.40 35 37 35 0.76 23 25 24 1.16 19 23 21 1.68 15 17 16 1.07
2048 104 105 104 0.47 51 51 51 0.11 37 38 37 0.49 25 28 26 1.17 21 24 23 0.95
4096 207 208 207 0.52 88 91 88 1.12 71 80 73 2.52 41 45 43 1.53 33 39 35 1.86
8192 419 420 420 0.56 170 171 171 0.33 158 162 159 1.62 79 85 81 2.72 60 65 60 1.50

16 384 863 866 864 1.15 424 428 425 1.44 309 328 312 5.73 185 189 187 1.76 139 144 142 1.45
32 768 1717 1723 1720 1.79 944 1937 1044 313.68 596 670 614 22.56 350 1062 424 224.34 271 276 273 1.83
65 536 3426 3449 3436 7.87 1872 2017 1890 44.68 1164 1190 1180 10.28 669 678 674 3.30 512 548 518 10.81

131 072 6873 6977 6913 28.26 378610 095 4469 1979.32 2316 2371 2343 23.33 1325 1475 1343 46.68 1007 1012 1009 1.97

TABLE 5.8: Summarized User Instructions Statistics of Subtraction by
Operand Size Across Models

Size Baseline GMP PML Sub (Worst) PML Sub PML Sub Approx

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

256 88 95 92 3.61 117 117 117 0.00 42 49 44 3.38 35 42 39 3.69 31 38 34 3.61
512 134 141 138 3.61 134 134 134 0.00 66 73 69 3.61 55 62 59 3.61 50 57 53 3.61

1024 239 246 245 2.21 168 168 168 0.00 96 103 99 3.61 74 81 77 3.61 65 72 69 3.61
2048 449 456 453 3.61 236 236 236 0.00 156 163 160 3.69 112 119 113 2.95 95 102 100 3.38
4096 869 876 874 3.38 372 372 372 0.00 276 283 280 3.69 188 195 191 3.61 155 162 159 3.61
8192 1709 1716 1713 3.69 644 644 644 0.00 516 523 520 3.69 340 347 344 3.61 275 282 278 3.61

16 384 3389 3396 3392 3.61 1188 1188 1188 0.00 996 1003 1000 3.69 644 651 648 3.61 515 522 519 3.61
32 768 6749 6756 6753 3.61 2276 2276 2276 0.00 1956 1963 1960 3.69 1252 1259 1256 3.69 995 1002 998 3.61
65 536 13 469 13 476 13 473 3.61 4452 4452 4452 0.00 3876 3883 3878 3.38 2468 2475 2473 3.38 1955 1962 1958 3.61

131 072 26 909 26 916 26 913 3.69 8804 8804 8804 0.00 7716 7723 7720 3.69 4900 4907 4903 3.61 3875 3882 3879 3.69
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Chapter 6

Accelerating the Multiplication of
Large Integers

Moving on, this chapter presents our multiplication approach for accelerating the
multiplication of large integers. We first discuss our proposed hybrid algorithm for
multiplying variable-sized large operands, followed by an algorithm for a fixed-size
base-case Vedic-based approach for multiplication to be integrated into the hybrid
approach. The subsequent discussion focuses on the implementation of this base-
case Vedic method, including the challenges faced and less effective strategies. Fi-
nally, the chapter concludes with an evaluation of the resulting implementation.

6.1 Parallel Hybrid-Multiplication

Parallelizing multiplication is tough for large numbers. As the size of the operands
increases, the number of multiplications increases exponentially O(n2) with a grade-
school or Urdhva-like approach, unlike the addition or subtraction, which linearly
increases with the operand size. For that reason, we typically need to utilize divide-
and-conquer-based strategies like Karatsuba and Toom-Cook or FFT for larger num-
bers, which minimizes the number of multiplications to a large extent (see Table 6.1).
However, for a smaller number of limbs, even though asymptotically slower, Grade-
school or Urdhva-Tiryagbhyam can be implemented faster than the others.

For this work, we propose a hybrid approach that is similar to some existing
works ([ET20; ET23]). However, instead of using the Grade-School as the base-case
multiplication, we utilize the Vedic approach, Urdhva-Tiryagbhyam. Since the Vedic
approach inherently breaks the operands into smaller individual digit sets, similar
to decomposing them into parallel sub-tasks, it reduces the number of additions
(refer to Table 2.2) for settling partial-products. Larger numbers can be recursively
split into two parts until they reach a certain threshold, after which we apply the
base-case parallel Urdhva-Tiryagbhyam kernel.

TABLE 6.1: Asymptotic Comparison of Number of Multiplications

Limbs Grade/Urdhva Toom-2 Toom-3 Toom-4
(n) (O(n2)) (O(n1.585)) (O(n1.465)) (O(n1.404))

4 16 9 (1.78×) 8 (2.00×) 7 (2.29×)
8 64 27 (2.37×) 21 (3.05×) 19 (3.37×)
16 256 81 (3.16×) 58 (4.41×) 49 (5.22×)
32 1024 243 (4.21×) 160 (6.40×) 130 (7.88×)
64 4096 729 (5.62×) 443 (9.25×) 343 (11.94×)
128 16384 2187 (7.49×) 1222 (13.41×) 909 (18.02×)
256 65536 6562 (9.99×) 3373 (19.43×) 2405 (27.25×)
512 262144 19688 (13.31×) 9313 (28.15×) 6365 (41.19×)
1024 1048576 59064 (17.75×) 25709 (40.79×) 16845 (62.25×)
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6.1.1 Base-case Parallel Urdhva-Tiryagbhyam

To parallelize multiplication with the Urdhva-Tiryagbhyam method, we propose an
approach named Vedic-Based Approach for Multiplication (VBAP Mul) that lever-
ages contiguous memory and concurrent operations for the multiplications. The
multiplicands and multipliers (in order with vertically and cross-wise) are organized
into two arrays, enabling parallel computation of intermediate products, followed
by set-wise summation and carry-over of higher portions (suddhikaran).

Note that the original Urdhva-Tiryagbhyam multiplication technique [MAH92]
is designed for single digits and operates in base 10. However, we can apply this
technique to any base B (as demonstrated in algorithm 15). In the implementation,
we can use the base Bk and adjust the limb size accordingly, without affecting the
overall result.

Below, we have shown our overall approach for computing multiplication using
the Vedic technique.

Approach

1. Operand Preparation: Store all multiplicands and multipliers in two contigu-
ous arrays, Mx and My, respectively. The elements are ordered to align with
the multiplication sets defined in Step 3 of our Urdhva-Tiryagbhyam algorithm
(see Algorithm 1).

2. Parallel Multiplication: Compute intermediate products concurrently using
M[i] = Mx[i]×My[i] for all i.

3. Set-Wise Addition: Group the intermediate products by their corresponding
sets and sum them.

4. Carry Propagation: Propagate carry-overs from the least significant set to the
most significant set, adjusting the results accordingly.

An example of the approach is shown below.

Example 6.1.1.1.
Consider the multiplication: 843× 384
We will do the following steps:
Step 1: Define Digit Sets

• For 843: {8, 84, 843, 43, 3}

• For 384: {3, 38, 384, 84, 4}

Step 2: Parallel Multiplication To enable parallelism, we define two arrays:

• Mx = [8, 8, 4, 8, 4, 3, 4, 3, 3]

• My = [3, 8, 3, 4, 8, 3, 4, 8, 4]

Each pair (Mx[i], My[i]) corresponds to a term in the cross-products. Compute the inter-
mediate products in parallel:

M = [24, 64, 12, 32, 32, 9, 16, 24, 12]

Thus, most of the heavy computation (multiplications) can be done in parallel.
Step 3: Group and Sum by Sets Group the elements of M according to their sets and
compute the sums:

M = [24, 64, 12︸ ︷︷ ︸
sum=76

, 32, 32, 9︸ ︷︷ ︸
sum=73

, 16, 24︸ ︷︷ ︸
sum=40

, 12]
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Resulting in:
M = [24, 76, 73, 40, 12]

Performing the sums within the sets is challenging to parallelize because it resembles
horizontal reduction, which is more difficult to parallelize for smaller numbers, especially
in the base case. However, for larger numbers, where the intermediate products are 128
bits or more, we can apply our PML Add techniques to speed up individual additions.
Unfortunately, this does not allow us to perform the overall additions within the sets in
parallel.
Step 4: Propagate Carries Propagate exceeding portions from the least significant set to
the most significant set:

• Initial: [24, 76, 73, 40, 12]

• 12 = 1︸︷︷︸ 2: Carry 1 to 40

• 40 + 1 = 41 = 4︸︷︷︸ 1: Carry 4 to 73

• 73 + 4 = 77 = 7︸︷︷︸ 7: Carry 7 to 76

• 76 + 7 = 83 = 8︸︷︷︸ 3: Carry 8 to 24

• 24 + 8 = 32 = 3︸︷︷︸ 2: Carry 3 to a new digit

After propagation:
M = [3, 2, 3, 7, 1, 2]

The carry-overs must be sequentially propagated and added, which may limit their paral-
lelization. However, when implementing this on modern x86-64 systems, we can mitigate
latencies associated with the carry-overs by using fused multiply-add instructions. This
approach was also incorporated into our final base-case VBAP Mul implementation. Con-
catenating the digits results in: 323712.

The algorithm for the Vedic-Based Approach for Multiplication is outlined in
Algorithm 15. Building on the approach mentioned before, the algorithm begins
by creating the arrays for the multiplicand and multiplier by examining the prefix
and suffix sets in step 1. In step 2, it then multiplies the corresponding digits inde-
pendently. Step 3 involves adding the intermediate products according to the sets,
followed by performing the carry-over, known as suddhikaran, based on the resulting
sums. If we examine the process, we can see that the multiplications in step 2 can be
executed in parallel. The formation of the multiplicands and multipliers can also be
determined independently by using a precomputed map, without needing to form
sets. The only limitation to parallelization arises from the steps of summing within
the sets and handling the carry-overs between them.



60 Chapter 6. Accelerating the Multiplication of Large Integers

Algorithm 15: Proposed Vedic-Based Approach for Multiplication (VBAP
Mul)

Input : Two n-digit numbers X and Y in base B.
Output: Product P = X×Y.

indexx ← 0, indexy ← 0; // Iterators for Mx and My
// Step 1: Form prefix and suffix digit sets and insert digits
for len← 1 to n do

Form prefix set PX,len from X with length len and extract individual digits;
for each digit d in PX,len do

Mx[indexx]← d;
indexx ← indexx + 1;

Form prefix set PY,len from Y with length len and extract individual digits;
for each digit d in PY,len do

My[indexy]← d;
indexy ← indexy + 1;

for len← n− 1 to 1 do
Form suffix set SX,len from X with length len and extract individual digits;
for each digit d in SX,len do

Mx[indexx]← d;
indexx ← indexx + 1;

Form suffix set SY,len from Y with length len and extract individual digits;
for each digit d in SY,len do

My[indexy]← d;
indexy ← indexy + 1;

// Step 2: Compute intermediate products in parallel
for i← 0 to indexx − 1 do

M[i]← Mx[i]×My[i]; // Perform multiplications concurrently

// Step 3: Group and sum intermediate products by sets
Define set boundaries based on original prefix/suffix pairings;
for each set Sk in M do

Rk ← sum of all M[i] within set Sk;

// Step 4: Perform suddhikaran (carry-over extra digits)
carry← 0;
for k← number of sets to 1 (right to left) do

Rk ← Rk + carry;
if Rk ≥ B then

carry← ⌊Rk/B⌋;
Rk ← Rk mod B;

else
carry← 0;

if carry > 0 then
Prepend carry as an extra digit to the result;

// Step 5: Combine digits to form the final product
Combine digits in R to form the product P;
return P;

6.1.2 Hybrid Approach: KVBAP Mul

Using the VBAP approach as the base case and Karatsuba overall, we aim to perform
the multiplication faster than the grade-school-based base case approach. While
splitting the operands into two parts using the Karatsuba method, if the number of
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limbs is less than or equal to five (i.e. 256-bits for 52-bit radix), we will utilize the
VBAP Mul approach. Algorithm 16 depicts the Hybrid approach: Karatsuba-VBAP
(KVBAP) Multiplication.

Proposed Hybrid Algorithm

Algorithm 16: Proposed Hybrid Karatsuba-VBAP (KVBAP) Multiplication
Input : Two N-limb numbers X and Y in base B, where each limb is bits_per_limb

bits (e.g., 64 on x86_64).
Output: Product P = X×Y.

// Define split point and base
k← ⌊N/2⌋;
b← 2k·bits_per_limb; // Base for splitting
// Base case: Use VBAP Multiplication
if N ≤ 5 then

P← VBAP_Mul(X, Y); // Solve base case with VBAP
return P;

// Recursive case: Split operands
Split X into X1 · b + X0, where X0 and X1 are k-limb numbers;
Split Y into Y1 · b + Y0, where Y0 and Y1 are k-limb numbers;
// Compute recursive products
P1 ← Hybrid_Karatsuba_VBAP(X1, Y1); // High part: X1 ×Y1
P2 ← Hybrid_Karatsuba_VBAP(X0, Y0); // Low part: X0 ×Y0
P3 ← Hybrid_Karatsuba_VBAP(X1 − X0, Y1 −Y0); // Cross term, handle
negatives

// Combine results
P← (b2 + b) · P1 − b · P3 + (b + 1) · P2; // Karatsuba combination
return P;

To simplify implementation, similar to GMP, we use subtraction operations in-
stead of addition operations within the Karatsuba algorithm to reduce the likelihood
of intermediary carry-outs. In this work, we successfully implemented the base-case
VBAP multiplication, and we are currently in the early stages of implementing the
hybrid approach. The implementation specifics of base-case VBAP Mul are listed at
implementation 20.

6.2 Implementation of Proposed 256-bit VBAP Mul using A-
VX512-IFMA

6.2.1 Data Representation

We adopt a 52-bit reduced-radix or unsaturated to accelerate large number multiplica-
tion representation. The final implementation of the VBAP Mul (20) assumes limbs
are stored from the highest index while reading the strings in little-endian order,
unlike addition and subtraction, which assume limbs are stored from the lowest in-
dices. Based on the implementation need, we may utilize either approach.

Example 6.2.1.1.
Consider a random 256-bit hexadecimal string:

0xEF1206754ee9451FA5F3C7B912E4D86F1B92A0D5E7C8F9346D1B5E2F9A3C7D8E
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52-bit Reduced-Radix Representation
(Highest Index)

limbs52 =

i limbs52[i]
0 0x0EF1206754EE9
1 0x451FA5F3C7B91
2 0x2E4D86F1B92A0
3 0xD5E7C8F9346D1
4 0xB5E2F9A3C7D8E

52-bit Reduced-Radix Representation
(Lowest Index)

limbs52 =

i limbs52[i]
0 0xB5E2F9A3C7D8E
1 0xD5E7C8F9346D1
2 0x2E4D86F1B92A0
3 0x451FA5F3C7B91
4 0x0EF1206754EE9

We had four implementation versions before obtaining our final version based
on the hybrid approach. We first discuss these four versions, followed by the final
implementation outline 20.

6.2.2 Sub-optimal Implementations

First Version: VBAP_MUL using decimal bases, grouping four decimal digits
into 32-bit limbs, unsaturated representation using AVX512F

Initially, we began working with four decimal digits, as multiplying four decimal
digits would result in eight digits, which is lower than the capability to handle nine
decimal digits safely with the 32-bit limb (232− 1 = 4, 29, 49, 67, 295). However, large
operands like 32768-bit multiplications with Urdhva-Tiryagbhyam would result in
a lot of additions within the sets, and we had to handle the additions within the
set with a 64-bit accumulator. To extract the higher and lower four digits, we used
division and modulo operators for each set.

Algorithm 17: VBAP_MUL using decimal bases, grouping four decimal dig-
its into 32-bit limbs, unsaturated representation

Input: num1, num2: Two numbers with n digits each
Output: product: Array of 2n− 1 limbs representing the product
// Divide the two numbers into n/4 limbs each, group into four digits from

least significant digit
set_index← 0, max_index← 2n− 2;
for set_index← 0 to max_index do

p← 0;
start← max(0, set_index− n + 1);
end← min(set_index, n− 1);
p← MULTIPLY_and_ADD(num1[start : end], num2[end : start]) ;
// Cross-multiply and add resultants

product[set_index]← p mod 10000;
carry[set_index + 1]← p/10000;

c← 0;
for i← 2n− 2 to 0 do

p← product[i] + carry[i] + c;
product[i]← p mod 10000;
c← p/10000;

return product

In terms of performance, it was 30 to 300 times slower than GMP across various
operand sizes. This can primarily be attributed to two factors: (1) half-saturated
limbs, which double the number of limbs and quadruple the number of multiplica-
tions due to the O(n2) algorithm, and (2) the overhead associated with costly divi-
sion and modulo operations for each set.
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Second Version: VBAP_MUL using saturated 64-bit hexadecimal representation,
AVX512F

To mitigate the division and modulo operations for extraction, we resorted to
hexadecimal representation of the values utilizing fully saturated radix within 64-
bit limbs. But as AVX512-F does not provide any instructions to get higher 64-bits of
the 128-bit resultant of multiplication for multiplying two 64-bit operands, we had
to partition the 64-bit into two smaller 32-bit sub-limbs (Similar to what GMP does).
The outline of the approach is mentioned here: outline 18. We have analysed the
timings of each of the utility functions (refer to Table 6.3), and we have observed
that as the number of limbs increases, the timing for only doing multiplication using
AVX512 increases drastically (due to O(n2) running time). For a smaller limb size
(256-bit), the time for only doing the multiplications is 5ns compared to the overall
time of GMP, 30ns. But the extra overheads of accumulating, adding, and carrying
over adjustments sum up to 108ns (3x slow). And for 2048 bits, overall VBAP_MUL
(64-32, AVX512F) is almost 10x slower.

Algorithm 18: Outline: VBAP_MUL (64-bit Limbs, split-into 32-bit sub-
limbs, AVX-512F)

Input: n1, n2, len: two numbers in hex, length in 64-bit limbs
Output: result: product, length 2× len
max_idx← 4× len× len;
mul_tmp_1, mul_tmp_2← arrays of length max_idx;
result← array of length max_idx;
accumulate_muls(n1, n2, len, mul_tmp_1, mul_tmp_2) ; // split 64-bit limbs into
32-bit sub-limbs

multiply_muls(max_idx, mul_tmp_1, mul_tmp_2, result) ; // 32-bit
multiplications

add_within_limbs(max_idx, result) ; // add within sets
adjust_inner_limbs(max_idx, result) ; // adjust within sets
remove_intermediary_zeros(max_idx, result) ; // compact result
add_limbs(len, max_idx, result) ; // outer adds
final_result← adjust_limbs(2× (2× len− 1)− 1, result) ; // outer adjusts
return final_result

Example 6.2.2.2.
The overall approach for the second version can be seen below for 16-bit numbers split
into two 8-bit numbers:

n1: f548 8543
n2: 6b0d 9410
After accumulate_muls():
mul_tmp_1: f5 f5 48 48 f5 f5 48 48 85 85 43 43 85 85 43 43
mul_tmp_2: 6b 0d 6b 0d 94 10 94 10 6b 0d 6b 0d 94 10 94 10
After multiply_muls():
result: 6667 0c71 1e18 03a8 8da4 0f50 29a0 0480 3797 06c1 1c01
0367 4ce4 0850 26bc 0430
After add_within_limbs():
result: 6667 2a89 0000 03a8 8da4 38f0 0000 0480 3797 22c2 0000
0367 4ce4 2f0c 0000 0430
After adjust_inner_limbs() and remove_intermediary_zeros():
result: 6691 8ca8 8ddc f480 37b9 c567 4d13 1030
result: (6691 8ca8) (8ddc f480 + 37b9 c567) (4d13 1030)
After add_limbs():
result: 6691 8ca8 c596 b9e7 4d13 1030
After adjust_limbs():
result: 6692 523f 6fa 1030
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Limbs Bits VBAP_MUL (64-32,AVX512F) GMP Mul
4 256 0.108 0.030
8 512 0.448 0.076
16 1024 1.583 0.247
32 2048 8.058 0.787

TABLE 6.2: Timing (in µs) comparison VBAP_MUL (64-bit Limbs,
split-into 32-bit sub-limbs, AVX512-F) with GMP on Intel Xeon E-2314

Limbs Bits acc mul add_within adjust_within remove_zeros add adjust
4 256 0.020 0.005 0.003 0.025 0.000 0.026 0.005
8 512 0.093 0.023 0.015 0.084 0.021 0.098 0.010
16 1024 0.299 0.110 0.058 0.326 0.090 0.367 0.026
32 2048 2.894 1.087 0.229 1.287 0.366 1.393 0.056

TABLE 6.3: Timing(in µs) of different utility functions for
VBAP_MUL(64-32,AVX512F) on Intel Xeon E-2314

Our optimization strategy to lower the total timing of the multiplication can be
one of the following:

1. Reduce the number of multiplications

2. Switch to 32-bit based limb format to avoid sub-limbs additions and adjustments

3. Avoid accumulation of operands into memory and directly load into the AVX registers

4. Get rid of removing zeros

5. Optimize the add and carry-over adjustment operations

Third Version: Base-Case 256-bit VBAP_MUL using saturated 32-bit hexadeci-
mal representation

To optimize the second version further, we tried to address the possible opti-
mizations in this version.

Reduce the number of multiplications: The number of multiplications can be re-
duced in two ways: Use a bigger base for operands. However, using AVX512-F, it is
not feasible to have more than 32 bits as an effective base, as using more than 32 bits
of data would result in a loss of the higher bits (the lower 64 bits would be returned).
The only other way remaining is to use a divide-and-conquer-based approach (like
Karatsuba), which reduces the number of multiplications. However, Karatsuba adds
overhead for smaller numbers, and vectorizing Karatsuba is a bit tricky due to its
recursion. Hence, we switched to the Hybrid Approach: For a threshold larger
than a specific one, use Karatsuba, and when the threshold is reached, use Urdhva-
Tiryagbhyam. The only task remaining now is to find a suitable size where we can
get benefits using Urdhva-Tiryagbhyam and AVX512. If we analyze the cost only
for multiplying using AVX512 (table 6.3), we can see that for 256-bit, multiplication
is taking 5ns, and the overall timing for GMP is 30ns. Hence, we have a lot of space
remaining ( 25ns) to beat GMP for 256 bits if we can optimize the other utility func-
tions. Thus, that’s how we chose 256-bit Urdhva-Tiryagbhyam as the base case.

Switch to 32-bit based limb format to avoid sub-limbs additions and adjust-
ments: As switching to 32-bit based limb format does not increase or decrease the
number of multiplications (because 64-bit was further divided into 32 bits), we can
easily do that and save up the extraction of higher and lower parts. In turn, we can
save up the sub-limb additions and carry-overs.

Avoid accumulation of operands into memory and directly load into the AVX
registers: As we decided to go on with only 256-bit for VBAP_MUL, serving as the
base case for our hybrid approach, we can manually place the required operands in
exact order inside the AVX512 registers. Thereby saving up the cost of the accumu-
lation part.
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Get rid of removing zeros: This was an unnecessary operation, and we can eas-
ily get rid of it.

Optimize the add and carry-over adjustment operations: It is hard to optimize
the add and carry-over adjustments, as these are the necessary operations. Using
AVX512-F, we could not find other ways to optimize it algorithmically. However,
we did some implementation optimization.

Algorithm 19: Outline: Base-case VBAP_MUL (32-bit Limbs, AVX-512F)
Input: num1, num2: Arrays of 32-bit unsigned integers (limbs)
Output: res: Array of 32-bit unsigned integers (product)
ACCUMULATE_MULTIPLY_AVX(num1, num2, res) ; // Directly Accumulate and
multiply using AVX-512

ADD_LIMBS(res) ; // Sum partial products into limbs
ADJUST_LIMBS(res) ; // Propagate carries across limbs
return res
With 256-bit operands, the ACCUMULATE_MULTIPLY_AVX implementation

processes two arrays, num1 and num2, each containing eight limbs of 32-bit un-
signed integers (denoted a0, a1, . . . , a7 and b0, b1, . . . , b7). These are loaded into 512-
bit AVX-512 registers as four lanes split into eight elements of 64-bit integers, with
each 32-bit limb zero-extended to 64-bit.

We need a total of 64 multiplications (n2 = (82)). At a time, we can process 512
bits, thus eight multiplications can be performed at once. Hence, the multiplica-
tion proceeds in 8 groups, each computing eight partial products by permuting and
multiplying selected limbs as per the order of the Urdhva-Tiryagbyam technique:

The eight groups and their lane contents are as follows:

• Group 1: Multiplies (a1b2, a0b3, a2b0, a1b1, a0b2, a1b0, a0b1, a0b0), stores at res[0..7].

• Group 2: Multiplies (a0b5, a4b0, a3b1, a2b2, a1b3, a0b4, a3b0, a2b1), stores at res[8..15].

• Group 3: Multiplies (a2b4, a1b5, a0b6, a5b0, a4b1, a3b2, a2b3, a1b4), stores at res[16..23].

• Group 4: Multiplies (a3b4, a2b5, a1b6, a0b7, a6b0, a5b1, a4b2, a3b3), stores at res[24..31].

• Group 5: Multiplies (a4b4, a3b5, a2b6, a1b7, a7b0, a6b1, a5b2, a4b3), stores at res[32..39].

• Group 6: Multiplies (a6b3, a5b4, a4b5, a3b6, a2b7, a7b1, a6b2, a5b3), stores at res[40..47].

• Group 7: Multiplies (a5b6, a4b7, a7b3, a6b4, a5b5, a4b6, a3b7, a7b2), stores at res[48..55].

• Group 8: Multiplies (a7b7, a7b6, a6b7, a7b5, a6b6, a5b7, a7b4, a6b5), stores at res[56..63].

(Note: data inside AVX512 across lanes are loaded in little-endian byte order) An
example lane configuration is shown in Figure 6.1 for Group 1.

For 256-bit base-case multiplication using this technique, it took 35ns compared
to GMP’s 30ns on Intel Xeon E-2314, which was still slower than GMP but much
faster than the second version (from 108ns to 35ns).

Therefore, with AVX512-F, we could not reduce the number of multiplications.
Also, if we analyze the total timing contribution, the ACCUMULATE_MULTIPLY_AVX
is still only taking nearly 8ns on Intel Xeon E-2314; the rest are from add and adjust.
The add and adjust functions are not efficiently vectorizable for 256 bits, as this needs
horizontal sum SIMD, which is not optimized properly yet. Consequently, we had
to resort to doing these operations on the ALU, significantly increasing the overall
execution time.

Fourth Version: Base-Case 256-bit VBAP_MUL using unsaturated 52-bit hexadec-
imal representation using AVX512-IFMA
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FIGURE 6.1: Example of AVX Lanes containing the operands while
multiplying and storing (Group-1)

We tried to look for AVX512 flags other than AVX512F that may contain any
useful way to get the higher part access while using 64-bit operands. We found that
AVX512IFMA-52 can be used to get the higher and lower bits of the resultant, but
we need to resort to a 52-bit base for the limbs. However, we get the higher bits and
lower bits by applying multiplication twice while loading the operands only once.
But that would be better than using 32-bit, as it reduces the number of limbs, in turn
reducing the number of multiplications, additions and adjustments.

We can utilize the following two intrinsics from AVX512IFMA-52:

1. _mm512_madd52hi_epu64: This intrinsic takes three operands: __m512i a, __m5-
12i b, and __m512i c. It multiplies packed unsigned 52-bit integers in each
64-bit element of b and c, producing a 104-bit intermediate result. Then, it
adds the high 52-bit unsigned integer from the intermediate result to the cor-
responding unsigned 64-bit integer in a, storing the results in the destination
(dst).

2. _mm512_madd52lo_epu64: This intrinsic also takes three operands: __m512i a,
__m512i b, and __m512i c. Similar to the first intrinsic, it multiplies packed
unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit
intermediate result. However, it adds the low 52-bit unsigned integer from
the intermediate result to the corresponding unsigned 64-bit integer in a and
stores the results in the destination (dst).

For 256 bits, we require five limbs to store in a 52-bit format with 64-bit limbs.
We will load five limbs only once and permute the AVX data to prepare the exact
operands for multiplication. Hence, a total of 25 multiplications are required for five
limbs. But to get the higher and lower 52 bits, we require multiplying them twice:
a total of 50 multiplications. Next, we need to add the higher and lower partial
products separately, corresponding to the set order (note we also need to account for
carries in higher partial products that may be generated in the lower partial product
additions). Then, the summed-up higher products are added to the lower products
according to the carry-over adjustments. This approach for multiplying two 256-bit
operands took 28ns on Intel Xeon E-2314, compared to GMP, which took 30ns (Faster
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than the third version, taking 35ns). The permuting and multiplying inside the AVX
register only took 4ns; the rest are from the sequential addition and carrying over.

Example 6.2.2.3.
An instance of the fourth version outline is shown with 128-bit operands:

For 128-bits:
a = 0xab32ef0112f0987afe01fabc12349f24
b = 0xab21fe1024ab5c2e234f867c664f3abe
(52-bit unsaturated format, 64-bit limbs)
a = 0000000000ab32ef 0000112f0987afe0 0001fabc12349f24
b = 0000000000ab21fe 0001024ab5c2e234 000f867c664f3abe
If we are accumulating:
m1: 0000000000ab32ef 0000000000ab32ef 0000112f0987afe0

0000000000ab32ef 0000112f0987afe0 0001fabc12349f24
0000112f0987afe0 0001fabc12349f24 0001fabc12349f24

m2: 0000000000ab21fe 0001024ab5c2e234 0000000000ab21fe
000f867c664f3abe 0001024ab5c2e234 0000000000ab21fe
000f867c664f3abe 0001024ab5c2e234 000f867c664f3abe

But, we will directly load this inside the AVX512 registers
using permutation.
Using AVX512-IFMA using mullo52:
r_lo_52: 7271c1125822 b246cd9db568c 37a886cec6040 b310b3a5af362

9c2e460937980 92e1925c589b8 9da8456ad4840 e3f1334761b50
736cae33844b8

Using AVX512-IFMA using mulhi52:
r_hi_52: 0 acbb4 b7cb a61ebd

11566b66d70 152bee 10ac88797012 1ff456c7f06b
1ebb39c039737

Next, we add the lower parts and the higher parts according
to set ordering:
r_lo_52: 7271c1125822 (b246cd9db568c + 37a886cec6040)

(b310b3a5af362 + 9c2e460937980 + 92e1925c589b8)
(9da8456ad4840 + e3f1334761b50) 736cae33844b8

r_hi_52: 0 (acbb4 + b7cb) (a61ebd + 11566b66d70 + 152bee)
(10ac88797012 + 1ff456c7f06b) 1ebb39c039737

Resulting into:
r_lo: 7271c1125822 e9ef546c7b6cc 1e2208c0b3f69a 1819978b236390
736cae33844b8
r_hi: 0 b837f 1156771b81b 30a0df41607d 1ebb39c039737
If r_lo[i] more than 13-hex digits, add 1 to r_hi[i] and
adjust r_lo[i]
r_lo: 7271c1125822 e9ef546c7b6cc (1)e2208c0b3f69a (1)819978b236390
736cae33844b8
r_hi: 0 b837f 1156771b81b 30a0df41607d 1ebb39c039737
==
r_lo: 7271c1125822 e9ef546c7b6cc e2208c0b3f69a 819978b236390
736cae33844b8
r_hi: 0 b837f 1156771b81c 30a0df41607e 1ebb39c039737
Carry-over adjustment:
Perform r_lo[i] += r_hi[i+1]:
r_lo: 7271c1125822 e9ef546c7b6cc e2208c0b3f69a 819978b236390
736cae33844b8
r_hi: b837f 1156771b81c 30a0df41607e 1ebb39c039737
+ ----------------------------------------------------------------
sum: 7271c11ddba1 ea00aae396ee8 e52a99ff55718 a054b2726fac7 736cae33844b8

(that’s our multiplication result)
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Final Implementation using AVX512-IFMA

To further reduce the sequential operations, we tried to look into the fused mul-
tiplication and addition, using which we can pass some values to be added while
computing the products within the same cycles (p = a + b ∗ c) using the AVX512-
IFMA52. We can pass some higher partial products directly while computing the
lows as we analyze the adds within the sets and carry-overs for 256-bit (52-bit limbs).
Figure 6.2 shows the intuition behind doing such a technique. For a five-limb multi-
plication (assuming each limb contains 8 bits for simplicity), we would typically per-
form the vertical and cross-wise multiplication followed by additions, as depicted in
(0) in the figure. However, after performing addition within the sets, we typically
carry over the exceeding bits of a current set to its preceding set as part of the sud-
dhikaran process. That means the higher ends of the resultant limbs are added to
the lower limbs of their preceding limbs.

By exploiting this behaviour, we may hide the latency for the carry-over process
using the fused-multiply-addition technique, which performs (p = a + b ∗ c) within
the same cycles. Simply, what we aim to do is to compute the highs beforehand.
Then, pass on the highs to the fused addition while computing the low products
(a + (b ∗ c)). We have marked the highs that can be added while computing the
products using the pointed-arrowed lows in Figure 6.2-(1) for five limb multiplica-
tions. Note that some of the highs can’t be added in the same cycles of FMA as
other highs are already being added to the desired lows and require adding them
up after the FMA is done, and those are marked with dotted arrows, and (2) shows
the process of adding up the remaining highs. Now, the only thing remaining is to
add up the intermediate results by their sets and propagate any minimal carry that
has been generated due to the within-set additions. Marked processes (3) and (4)
exactly perform that. Note that this carry-propagation is not the same as the usual
suddhikaran, where highs are added to the lows. In the typical suddhikaran pro-
cess, the highs are added to the lows; we are still required to propagate any carry
generated to the preceding lows, and that can be taken as the same process of this
carry propagation. By this technique, we are able to hide the latency of adding the
highs to the lows using the FMA.

To represent 256-bit in 52-bit reduced radix format, we require exactly five limbs
that perform a similar thing, except taking 52 bits instead of 8 bits as shown in the
example in Figure 6.2.

For base case multiplication, we’re working with 256 bits; five limbs are needed
for each of the two operands. Means a total of 25 multiplications. However, through
AVX512IFMA, we can process eight 64-bit (with 52-bit radix) at once, which means
we would require a total of three rounds of AVX512IFMA-52 multiplication followed
by a single remaining multiplication to be performed either on the usual ALU or
128-bit register. Also, the remaining last multiplication does not contribute to any
other highs or lows, as can be seen in Figure 6.2. Table 6.4 shows the high indices
that need to be added to the corresponding low indices while performing the fused
multiply and add. The corresponding highs of the asterisk-marked low indices have
to be added after the fused multiplication is over, as one of their preceding highs is
already being added during FMA. For example, the value at high index-1 is added
to the value at low index-0, so after the FMA operation, the value at high index-2
will also be added to low index-0.

To effectively compute the first set of low indices (0-7), we first need to account
for their dependency on the high indices (0-11). This requires us to calculate two sets
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FIGURE 6.2: Example of Proposed Urdhva-Tiryagbhyam Five-Limb
Fused-Multiplication-Addition Technique

High Index 0 1 2 3 4 5 6 7 8 9 10 11
Low Index - 0 0* 1 2 2* 3 4 5 5* 6 7
High Index 12 13 14 15 16 17 18 19 20 21 22 23 24
Low Index 8 9 9* 10 11 12 13 15 16 17 19 20 22

TABLE 6.4: High-Low Index Mapping for five limbs IFMA AVX Mul-
tiplication for Basecase 256-bit VBAP MUL

of high indices: the first set (0-7) and the second set (8-15), before we can proceed
with computing the first set of low indices.

Next, for the second set of low indices (8-15), there is a dependency on high
indices (12-19). Thus, we need to compute both the second set of high indices (8-
15) and the third set (16-23). After calculating the third and final set of high indices
(16-23), we can assign the respective indices from the second and third sets of high
indices to their corresponding low indices during the fused multiply-add (FMA)
operation. Followed by passing the required indices from the third set of highs to
the corresponding third set of lows for preparation. After the FMA is over, we will
add the asterisk-marked high indices to the corresponding low indices of the FMA
computed values.

Once all the high indices have been added to the low indices, we have already
performed both the multiplication and the carry-over phase. The only remaining
task is to add the lows as per the set ordering, propagate any extra carry generated
from the low indices to their preceding low indices and store the results from the
high indices (1-9). It’s important to note that high index 0 already contains the de-
sired value, with the exception of any carry that needs to be added from the first low
index.
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Before proceeding, we need to understand the lane contents to be prepared for
multiplications:

a0a1a2a3a4
× b0b1b2b3b4

a0b0
a0b1 + a1b0
a0b2 + a1b1 + a2b0
a0b3 + a1b2 + a2b1 + a3b0
a0b4 + a1b3 + a2b2 + a3b1 + a4b0
a1b4 + a2b3 + a3b2 + a4b1
a2b4 + a3b3 + a4b2
a3b4 + a4b3
a4b4

The three groups and their lane contents would be as follows:

• Group 1: Multiplies (a1b2, a0b3, a2b0, a1b1, a0b2, a1b0, a0b1, a0b0)

• Group 2: Multiplies (a1b4, a4b0, a3b1, a2b2, a1b3, a0b4, a3b0, a2b1)

• Group 3: Multiplies (a4b3, a3b4, a4b2, a3b3, a2b4, a4b1, a3b2, a2b3)

Left-over a4b4 can be multiplied in the usual general-purpose registers.
The implementation outline (Algorithm 20) depicts the final approach for com-

puting 256-bit base-case multiplication using VBAP MUL and FMA techniques. In
the code implementation for the base case 256-bit VBAP Mul, arranging the ordering
of the intrinsic calls is crucial, as there are heavy read-after-write (RAW) dependen-
cies among them. In our final implementation, we tried many permutations and
combinations to arrange the intrinsic calls of load, stores and other operations in a
way that minimizes the pipelined stalls due to conflicts.

For a detailed overview of the AVX Lane operations, you may see Figure 6.3.
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Algorithm 20: Implementation Outline of 256-bit Base-Case Multiplication
with VBAP MUL and IFMA

Input: a[0 . . . 4], b[0 . . . 4] (256-bit operands split into 5 limbs each)
Output: high[0 . . . 9] (result of a[0 . . . 4]× b[0 . . . 4])
1. Load a[0 . . . 4] into base_1 (lanes 0 to 4) and b[0 . . . 4] into base_2 (lanes 0 to 4)
2. Permute base_1 to get Group 1 multiplicands: a_vec0 ← ⟨a1, a0, a2, a1, a0, a1, a0, a0⟩
3. Permute base_2 to get Group 1 multipliers: b_vec0 ← ⟨b2, b3, b0, b1, b2, b0, b1, b0⟩
4. hi_vec0 ← fused_mul_add_hi(0, a_vec0, b_vec0) // Highs 7–0
5. Store hi_vec0[7 . . . 0] to high[0 . . . 7]
6. Permute base_1 to get Group 2 multiplicands: a_vec1 ← ⟨a1, a4, a3, a2, a1, a0, a3, a2⟩
7. Permute base_2 to get Group 2 multipliers: b_vec1 ← ⟨b4, b0, b1, b2, b3, b4, b0, b1⟩
8. hi_vec1 ← fused_mul_add_hi(0, a_vec1, b_vec1) // Highs 15–8
9. Store hi_vec1[7 . . . 0] to high[8 . . . 15]
10. hi_addlow0 ←
⟨hi_vec1[3], hi_vec1[2], hi_vec1[0], hi_vec0[7], hi_vec0[6], hi_vec0[4], hi_vec0[3], hi_vec0[1]⟩

11. lo_vec0 ← fused_mul_add_lo(hi_addlow0 , a_vec0, b_vec0)

12. Store lo_vec0[7 . . . 0] to low[0 . . . 7]
13. Permute base_1 to get Group 3 multiplicands:

a_vec2 ← ⟨a4, a3, a4, a3, a2, a4, a3, a2⟩
14. Permute base_2 to get Group 3 multipliers: b_vec2 ← ⟨b3, b4, b2, b3, b4, b1, b2, b3⟩
15. hi_vec2 ← fused_mul_add_hi(0, a_vec2, b_vec2) // Highs 23–16
16. hi_addlow1 ←
⟨hi_vec2[3], 0, hi_vec2[2], hi_vec2[1], hi_vec2[0], hi_vec1[7], hi_vec1[5], hi_vec1[4]⟩

17. lo_vec1 ← fused_mul_add_lo(hi_addlow1 , a_vec1, b_vec1)

18. hi_addlow2 ← ⟨0, 0, 0, hi_vec2[7], hi_vec2[6], 0, hi_vec2[5], hi_vec2[4]⟩
19. lo_vec2 ← fused_mul_add_lo(hi_addlow2 , a_vec2, b_vec2)
20. Store lo_vec1[7 . . . 0] to low[8 . . . 15]
21. prod← a[4]× b[4]
22. begin // Remaining Additions

low[22]← low[22] + (prod >> 52)
low[0]← low[0] + high[2]
low[2]← low[2] + high[5]
low[5]← low[5] + high[9]
low[9]← low[9] + high[14]

23. begin // Within-set additions and carry propagation
high[9]← prod&0xFFFFFFFFFFFFF; for i← 8 to 1 do

sum← carry; switch i do
case 8 do

sum+ = low[22] + low[23]
case 7 do

sum+ = low[19] + low[20] + low[21]
case 6 do

sum+ = low[15] + low[16] + low[17] + low[18]
case 5 do

sum+ = low[10] + low[11] + low[12] + low[13] + low[14]
case 4 do

sum+ = low[6] + low[7] + low[8] + low[9]
case 3 do

sum+ = low[3] + low[4] + low[5]
case 2 do

sum+ = low[1] + low[2]
case 1 do

sum+ = low[0]

high[i]← sum&0xFFFFFFFFFFFFF; carry← sum >> 52;
high[0]+ = carry;

24. high[0 . . . 9] contains the result of a[0 . . . 4]× b[0 . . . 4]
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FIGURE 6.3: Overview of AVX Lane operations for five limb VBAP
MUL using IFMA

6.3 Evaluation

In the hybrid KVBAP Mul approach, we implemented only the 256-bit base case
VBAP multiplication. Therefore, the entire evaluation is based solely on 256-bit
operand sizes. Similar to Addition and Subtraction, the core questions we are trying
to answer here are the following:

1. Are the computations yielding correct results for 256-bit multiplication?

2. Are we getting any performance improvements, in terms of execution time,
instruction count, and CPU Cycles, over GMP?

3. How much performance gain do we get compared to GMP for 256-bit multi-
plication?

4. How much performance gain are we observing with vectorization as com-
pared to a non-vectorized baseline implementation?

For the vectorized multiplication (Base case 256-bit VBAP Mul), we have used
the following set of flags:

-mavx512f -mavx512ifma -O1

For the base case 256-bit VBAP Mul, the GCC compiler with the O2 flag rearranged
the intrinsic calls to an undesired order, leading to probable pipeline stalls in the
AVX ALU. In contrast, the O1 flag kept the ordering intact, getting the optimal per-
formance. The correctness check and benchmarking were conducted on the same
x86-64-based Intel Xeon E-2314 CPU.
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FIGURE 6.4: VBAP vs. GMP: Performance Gains on Intel Xeon E-2314
(256-bit Mul)

6.3.1 Correctness

To validate the correctness of our base case 256-bit VBAP Mul, we generated mul-
tiple sets of 1,00,000 random test cases using a similar technique as with addition
and subtraction implemented via Python’s random module and the gmpy2 ([PYP])
library. All the computations with the VBAP Mul matched the pre-computed results
of the gmpy2 library.

6.3.2 Performance Compared to GMP

The works by [KM14; GK16; ET18; ET20; ET23] obtained their performance gains
only beyond 1024-bit operand sizes and are typically slow below 1024-bits when
compared to GMP. Consequently, we opted to benchmark our performance primar-
ily against the GMP. Similar to addition and subtraction, we benchmarked against
the latest available GMP, version 6.3.0, invoking the corresponding function of GMP
(mpz_mul()) from C code.

We reported the average execution time (in nanoseconds), average operations
per second, average tick counts, and user instruction counts for both multiplication
functions. Figure 6.4 illustrates the improvement factors for each category.

In terms of average execution time, GMP takes 31.7 ns, while VBAP performs bet-
ter at 16.8 ns, making VBAP 1.83 times faster than GMP. The throughput for GMP is
approximately 32.6 million operations per second (OP/s), compared to VBAP’s 59.4
million OP/s, which is 1.82 times higher than GMP. With VBAP, only 129 user in-
structions are executed, whereas GMP requires about 373 user instructions, resulting
in 2.89 times fewer instructions for VBAP, a reduction of 65% in the user instruction
count. In terms of average ticks, VBAP shows an improvement of 1.66 times over
GMP, with VBAP taking 56 ticks compared to GMP’s 93 ticks.
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Chapter 7

Discussion and Limitations

7.1 Discussion

Addition and Subtraction : In terms of average execution time for large integer
additions, we observed a notable performance improvement when compared to the
GMP library, with an average speed-up of 2.06x and a median of 2.02x. When com-
pared to the baseline, we achieved an average speed-up of 5.14x and a median of
5.38x. Even in the worst rare cases, we still achieve an average of 1.38x and a me-
dian of 1.35x performance gain over GMP. For subtraction, we see an average per-
formance improvement of 2.32x and a median improvement of 2.17x over GMP, an
average of 4.26x and a median of 4.81x improvement over baseline. In worst cases,
we are still seeing an average of 1.49x and a median of 1.46x improvement over GMP.

The performance gain we achieved for addition and subtraction, in rare cases, is
reduced due to phase 4 trigger events (i.e. current limb addition generating a carry
and its preceding block is maxed or zeroed out). However, for millions of test cases,
we could not find any such cases triggering into phase 4 for each of the limb sizes
ranging from 256-bit to 1,31,072-bit, generated using the random number generator.
We have to manually curate the inputs so that they get triggered into phase 4, and
our implementation is still considerably faster than GMP in such cases, too.

We are seeing a superior performance in subtraction compared to addition, and
this can be noted in all the metrics. For instance, on average, across the operand
sizes for the regular cases, PML Add is taking 335 ticks compared to 270 ticks by
PML Sub and 1151 user instructions compared to 1006 user instructions. In worst
cases, on average across operands, PML Add is observing 540 average ticks and
1762 user instructions compared to PML Sub’s 469 average ticks and 1569 user in-
structions. Although we simply followed a similar implementation strategy for ad-
dition and subtraction, we still see a mismatch in execution time and user instruction
counts for both PML and baseline. We are confused about its reason, with one of the
possibilities being compiler-generated code, as GMP for both operations stays with
similar metrics. Current benchmarks only cover bit sizes of {256, 512, 1024, 2048,
8192, 16384, 32768, 65536, 131072}, and we haven’t shown odd bit sizes. Our imple-
mentation, however, is structured around the number of limbs, as AVX512 processes
512 bits at once (i.e. eight 64-bit limbs). This means we achieve peak performance
when the number of limbs is a multiple of eight. For cases where the number of
limbs isn’t a multiple of eight, we can handle them efficiently using four versions of
the ADD/SUB macro: single-limb operations can be done manually with general-
purpose registers; two-limb operations can leverage SSE2 (128-bit) using the same
PML Add or Sub logic; four-limb operations can utilize AVX2 (256-bit) for PML
Add/Sub; eight-limb operations can directly run with AVX512. Any remaining odd
limbs are processed using combinations of these macros. In our initial experiments
with a 512-bit hybrid KVBAP MUL using IFMA (52-bit limbs), we integrated these



7.1. Discussion 75

four addition and subtraction macros into Karatsuba, and it worked flawlessly, de-
livering comparable performance gains.

For the approximate variants of addition and subtraction, we tested our code
implementation using an extensive set of randomly generated test cases, and it pro-
duced correct results across all the test cases. If one’s application for large number
addition and subtraction mostly uses random operands and can accept slightly ap-
proximate computations in very rare cases, they could achieve further performance
boosts compared to GMP: an average speed-up of nearly 2.52x for addition and 2.8x
for subtraction. In addition to offering superior performance, the approximation ap-
proach also decreases the number of instructions to be executed by 18% for addition
and 28% for subtraction, on average, compared to the standard non-approximate
variant. This reduction in instructions can lead to greater energy savings as well.
One of the motivations behind existing works on approximate calculations, as noted
in previous studies ([Jia+20; AKL18]), is energy savings, and this principle is appli-
cable in this case as well.

In comparison to existing works, Alexander Yee’s technique ([Yee19]) for y-crunc-
her claimed not to show much performance gains due to the micro-architectural
slowdown of operating on mask registers. They noted that their method incurs con-
siderable overhead, making it difficult to outperform a chain of add-with-carry in-
structions on x64 systems; thus, our technique puts the majority of the operations on
the masking registers inside phase 4, which almost never triggers. On the other
hand, the work by Ren et al. [RSS23] did not provide their code in their paper,
and the implementation details were not sufficient to recreate their implementation.
However, they did not compare their work with GMP; rather, they tried to infuse it
in the existing libraries: a 30% speed-up from the latest CTIDH implementation, an
11% speed-up from the latest CSIDH implementation in AVX-512 processors, and a
7% speed-up from Microsoft’s standard PQCrypto-SIDH for SIKEp503 on A64FX.

Multiplication: For multiplication, we only computed for fixed 256-bit (or five 52-
bit limb format), and we are working on variable size multiplications (below or equal
to 256-bit use base case approach; otherwise, use hybrid).

We observed 65% fewer user instructions executed by the VBAP Mul as com-
pared to GMP, providing above 1.80 times performance gain in terms of execution
time and throughput. While analyzing timings inside the VBAP Mul, the mostly
computationally heavy AVX part (highs and lows computation inside the AVX512
registers, including loads and stores) attributed just about 5.4ns and the rest of the
11.4ns were contributed by the remaining non-AVX code that utilized the general-
purpose registers (for adding up the lows and propagating the carry-overs) and the
latency to switch between AVX registers and general-purpose registers. This ob-
servation is further corroborated by analyzing the assembly instructions generated
from the compiled C code. Out of the total number of instructions, AVX512 instruc-
tions made up only 42% of the total, whereas the serial parts represented 56%. Addi-
tionally, when we look at the timing magnitudes, 42% of the instructions contributed
to 32% of the total execution time, while the following 56% of serial parts accounted
for 56% of the timing.

Notably, we observed that the GCC compiler with certain optimization flags
like O2, O3 and Ofast rearranges the inlined intrinsic calls in an undesired way for
AVX512. Thus, the compiled code with O2 or higher flags degrades the performance,
as the original high-level C code for VBAP Mul is written with the RAW dependen-
cies in mind. O1 worked best as it hardly rearranged the order of the intrinsic calls,
providing the best performance among the O flags.
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Existing implementations using intrinsics [KM14; GK16; ET18; ET20; ET23] saw
performance gains above 1,024 bits to 3,072 bits and did not see any benefit below
1024 bits, but we are seeing performance gains even on 256 bits.

Future with AVX10: Unlike AVX-512, which is limited to P-cores in Intel’s high-
end processors, AVX10 introduces 512-bit SIMD capabilities to both P-cores and E-
cores across all future Intel processors, broadening its applicability. AVX10.1, sched-
uled for release with the already launched Granite Rapids in Q3 2024, will enumer-
ate AVX-512 instructions at 128, 256, and 512-bit vector lengths for software pre-
enabling. This ensures that applications will run on any future processor support-
ing AVX10.1 or higher while maintaining compatibility with these vector lengths. A
unified AVX10 with at least 256-bit vectors will be supported by all Intel processors.
With ongoing updates to specifications and intrinsics (including support in GCC),
AVX10 retains AVX-512’s zmm (512-bit) registers, offering potential microarchitec-
tural performance improvements for a wide range of applications. Although all the
intrinsics we used in the AVX-512 implementation for addition, subtraction, and
multiplication are natively supported in AVX10 through GCC (including the most
recent version, 15), the performance of the code remains specific to the microarchi-
tecture. Due to the current timeline of our work, we could not acquire an AVX-10
CPU in a bare-metal form. We anticipate similar or improved performance from the
upcoming x86-64-based CPUs that support AVX-10.

Overall: GMP utilizes micro-architecture fine-tuned assembly instructions rather
than relying solely on the compiler to generate assembly code from C. This approach
allows them to take advantage of several newer instructions that can capitalize on
the capabilities of the latest CPUs, which a general-purpose compiler might not op-
timize for to avoid complications. However, we were still able to get performance
benefits with GCC-compiled code with AVX512 intrinsics, and we believe that writ-
ing micro-architecture fine-tuned assembly routines utilizing the AVX512 instruc-
tions could improve performance further. From a performance standpoint, we have
achieved several benefits through the use of AVX512. Specifically, we can process
eight 64-bit elements simultaneously for addition and subtraction. Additionally, our
modified algorithm attempts to decompose dependencies into multiple phases to
enhance parallel processing. For multiplication, we utilized IFMA (Integer Fused
Multiply-Add), allowing us to process eight 52-bit elements while also passing other
prepared values to be added within the same cycle. However, regarding cache per-
formance, AVX typically fetches data from the memory hierarchy. Since we have
aligned our data representation exactly with GMP (GNU Multiple Precision Arith-
metic Library), we did not take advantage of cache benefits compared to GMP.

Suggestions for Micro-architectural Changes for Better Performance: When work-
ing with AVX registers, the best approach is to perform all computations using these
registers and then switch back to the general-purpose registers. This strategy helps
avoid the latency penalty associated with transitioning between AVX registers and
general-purpose registers. However, due to the current micro-architectural design,
during the addition and subtraction operations, we often need to manipulate the
masking bits stored in the mask registers. This operation requires transferring these
values to general-purpose registers, which incurs additional latency. It would be
more efficient if we could operate on these masks directly within the AVX registers
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or utilize a separate set of mask registers within the AVX ALU. This change could
help minimize the latency penalty.

Currently, x86-64-based CPUs do not have any AVX512 instructions that can hor-
izontally add up certain values inside the AVX registers efficiently. If that becomes
available, we can drastically reduce the timings of multiplication.

Also, movement of data across lanes is quite complex, as we do not have a single
set of intrinsics with AVX512 that can perform that efficiently. The programmer
needs to manually perform them with a combination of multiple intrinsics, which
may be inefficient sometimes, if not written properly.

One would hope that SIMD registers can perform computations at their full vec-
tor size. For instance, when working with AVX512, we could load 512 bits and carry
out an addition on all 512 bits simultaneously. The underlying hardware would au-
tomatically manage carry propagation, minimizing the need for manual software
implementation within the 512 bits.

Some Lessons Learned: Write the code wisely: Even with a single if statement
within a loop, it can drastically affect the performance. We may use LIKELY or
UNLIKELY constructs, if the operations inside the loop are large enough or switch
to logical operations for some small set of operations inside a loop, if applicable.
Additionally, the types and sizes of variables can affect your code’s performance.
Optimization flags such as O1, O2, or higher may sometimes degrade performance,
so it’s essential to test with all available flags and choose the one that optimizes
your code effectively. We have observed that with GCC using O2 optimization, it
can sometimes rearrange AVX intrinsics in a way that leads to conflicts or pipeline
stalls. Benchmarking the code: Sometimes, with a bug in the code, the compiler
omits some of the unreachable basic blocks within your code, which may increase
the performance. Cross-check with the generated assembly to verify its correctness.
Certainly, try to use standard tools for profiling; GNU standards would be preferred,
and some tools could even be provided by the hardware vendor. And, do not profile
your code on a VM instance, at least for parallelized codes, try to get a bare-metal
CPU.

7.2 Limitations

Our benchmarking was conducted on a single CPU (Intel Xeon E-2314, based on
the Rocket Lake microarchitecture) due to limited hardware availability. It is possi-
ble that different microarchitectures might yield different behaviours. For example,
during addition and subtraction, Phase 4 relied heavily on masked registers, which
could perform more slowly on other architectures. Nevertheless, our implemen-
tation may match the performance of GMP for those cases. Note that these mask
register-based computations are predominantly placed within conditional if-blocks
that are rarely executed (in our tests, they were never executed).

We could not compare our performance metrics with certain prior works [RSS23]
due to missing implementation details and the unavailability of corresponding code.
Moreover, there’s very limited research on parallelizing addition and subtraction
operations, largely because of their chained dependency.

Our SIMD vectorization analysis focused exclusively on AVX512. In the context
of multiplication, the VBAP MUL was implemented with a fixed number of limbs
(five) without generalizing the implementation to accommodate an arbitrary num-
ber of limbs.
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We did not integrate addition and subtraction operations into any existing cryp-
tographic library to test under real workloads. This is mainly because these opera-
tions are used indirectly (for instance, within multiplication algorithms like Karat-
suba and other modulo arithmetic operations) rather than directly in use cases like
cryptography tools. We have begun implementing the hybrid KVBAP Multiplica-
tion approach, where we aim to use the PML Add and Sub in each recursion for
addition and subtraction. Our initial experiments indicated some performance ben-
efits from this approach.
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Chapter 8

Conclusion and Future Scope

Nevertheless, we benefit from using vectorization techniques combined with well-
designed parallel algorithms for large-number addition, subtraction, and multipli-
cation, consistent with existing works’ findings. Our implementation often outper-
forms previous methods for large-number addition and subtraction. While earlier
studies observed speed-ups over GMP only for multiplication on operands larger
than 1024 bits, our base case implementation using the Vedic approach showed im-
provements even at 256 bits. With a fully optimized implementation, we anticipate
further performance gains.

In future, we plan to extend the parallel algorithms to additional SIMD instruc-
tion sets, such as the upcoming AVX10 on Intel (with planned support for Granite
Rapids and Diamond Rapids, promising to integrate all the sets of AVX512 instruc-
tions into one simplified set with 512+ bits support) Neon, SVE, and SVE2 on ARM,
as well as RVV on RISC-V. For instance, SVE (Scalable Vector Extension) and RVV
(RISC-V Vector Extension) offer scalable, implementation-defined vector sizes com-
pared to the fixed sizes typical of x86-64 machines, which may enable further opti-
mizations.

In this work, we only targeted addition, subtraction, and multiplication on large
numbers, but there are a few more foundational operations, such as division, mod-
ulo arithmetic, and factorization. Vedic mathematics has an exhaustive set of sutras
in this context, and no prior study has analyzed their efficacy for large-number arith-
metic. For instance, the same Urdhva-Tiryagbhyam technique is also applicable to
division. For higher-order Toom-Cook multiplication, we came across solving a sys-
tem of equations, and Vedic mathematics has sutras, including Paravartya Yojayet
and Sankalana-vyavakalanabhyam for solving a system of equations, which might
be explored there for solving large-number multiplication itself.

We may also explore efficient multi-threading for sufficiently larger operands
(unlike the earlier works on operand sizes ranging between 6.4× 106 to 6.4× 1010

bits) to evaluate its potential benefits. Although we initially experimented with
Pthreads and OpenMP on the Intel Xeon E-2314, we observed no performance gains
for this work’s targeted operand sizes, resulting in slower execution. However, a
more refined implementation might yield positive results.

We are in our initial phase of the hybrid KVABP implementation for variable-
sized operands, with results expected in the near future. One may also investigate
offloading the parallel computations to a GPU to evaluate the performance; we have
not yet tried that out with our algorithms, but there are a few works [EW11] for
multiplication that yielded the benefits with GPU, but on 255K bits to 24.512M bit
operand sizes.

We are also trying to address the inefficiencies in the 256-bit base case VBAP
multiplication, specifically the serial parts involving the addition of lower segments
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and the adjustment of carry-overs. These limitations are primarily attributed to cur-
rent hardware capabilities in handling conditional horizontal additions within AVX
registers. We have not explored the other SIMD instruction sets and whether we can
benefit from using them or not. Also, we may consider utilizing SIMD assembly in-
structions instead of intrinsics. A carefully tuned, assembly-level approach tailored
to specific microarchitectures could potentially provide substantial speed-ups.
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Appendix A

Measurement Techniques

A.1 Timing Measurements

A.1.1 RUSAGE

In Linux systems, getrusage [man24a] is a system call that provides resource usage
statistics for the calling process. It is used to measure the resources used by the
process, like CPU time, memory usage, etc. We used this system call to measure
the CPU time used by our code. POSIX.1 specifies getrusage but defines only the
fields ru_utime and ru_stime. For our benchmarking purposes, along with other
tools PERF, RDTSCP, and Timespec (clock_gettime), we also utilized ru_utime and
ru_stime to measure user CPU time and system CPU time, respectively.

Example A.1.1.1.

// Function to measure CPU time in microseconds as a long double
static inline long double cputime()
{

struct rusage rus;
getrusage(RUSAGE_SELF, &rus);
return rus.ru_utime.tv_sec * 1000000.0L + rus.ru_utime.tv_usec;

}

A.1.2 RDTSC

To measure hardware ticks/CPU cycles accurately while operating on the actual
CPU (not emulators) without much overhead (which tools like PERF add), we ini-
tially used RDTSC ticks. However, it is well-known that RDTSC does not provide
accurate measurements in cases of code cross-contamination due to out-of-order exe-
cution. To address this, we explored proper benchmarking techniques using RDTSC.
We found a white paper by Intel that explains how to measure ticks accurately us-
ing a combination of CPUID, RDTSC, and RDTSCP instructions. You can find the
white paper here: [Pao10]. Below, we have mentioned the code that we utilized for
measuring start and ending functions based on the white paper.

Example A.1.2.1.

static inline unsigned long long measure_rdtsc_start()
{

unsigned cycles_low, cycles_high;
unsigned long long ticks;
asm volatile("CPUID\n\t"

"RDTSC\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t" :
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"=r"(cycles_high), "=r"(cycles_low)::
"%rax", "%rbx", "%rcx", "%rdx");

ticks = (((unsigned long long)cycles_high << 32) | cycles_low);
return ticks;

}

static inline unsigned long long measure_rdtscp_end()
{

unsigned cycles_low, cycles_high;
unsigned long long ticks;
asm volatile("RDTSCP\n\t"

"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"
"CPUID\n\t" : "=r"(cycles_high), "=r"(cycles_low)::

"%rax","%rbx", "%rcx", "%rdx");
ticks = (((unsigned long long)cycles_high << 32) | cycles_low);
return ticks;

}

We used this benchmarking methodology throughout our work to report relative
ticks.

A.1.3 Timespec

In addition to getrusage and RDTSC-based methods, we employed the clock_gettime
function with the CLOCK_MONOTONIC_RAW clock to measure elapsed wall-clock time
with high precision for our benchmarking. This system call, available on POSIX-
compliant systems like Linux, provides timing measurements in nanoseconds via
the struct timespec, which includes seconds (tv_sec) and nanoseconds (tv_nsec)
fields. We selected CLOCK_MONOTONIC_RAW to ensure a monotonically increasing clock
unaffected by system clock updates or adjustments, offering a reliable measure of
real-time elapsed between two points in our code execution. The following func-
tions were implemented to capture and compute time differences: get_timespec
retrieves the current timestamp, and diff_timespec_us calculates the difference be-
tween two timestamps in microseconds, handling nanosecond underflows to main-
tain accuracy. This approach complements our CPU-focused measurements by pro-
viding a precise wall-clock perspective, which we used alongside PERF, RDTSC, and
getrusage to evaluate performance comprehensively.

Example A.1.3.1.

static inline struct timespec get_timespec()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
return ts;

}

static inline long diff_timespec_us(struct timespec start,
struct timespec end)

{
struct timespec temp;
if ((end.tv_nsec - start.tv_nsec) < 0)
{

temp.tv_sec = end.tv_sec - start.tv_sec - 1;
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temp.tv_nsec = 1000000000 + end.tv_nsec - start.tv_nsec;
}
else
{

temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_nsec = end.tv_nsec - start.tv_nsec;

}
// return in microseconds
return (temp.tv_sec * 1000000000 + temp.tv_nsec) / 1000;

}

A.1.4 Measuring Execution Time and Number of Operations

To get a stable and trustworthy average execution time for micro-benchmarking, we
have used the averaging technique from GMPbench [GMP].

To get the average execution time:

Example A.1.4.1.

#define TIME(t, func) \
do \
{ \

long int __t0, __times, __t, __tmp; \
__times = 1; \
{ \

func; \
} \
do \
{ \

__times <<= 1; \
__t0 = cputime(); \
for (__t = 0; __t < __times; __t++) \
{ \

func; \
} \
__tmp = cputime() - __t0; \

} while (__tmp < 250000); \
(t) = (double)__tmp / __times; \

} while (0)

The macro TIME(t, func) computes the average CPU time required to execute
a specified function or code block func by calibrating the CPU speed to ensure ac-
curate timing. It begins with a single execution of func as a warm-up to account
for initial overhead and then enters a loop where the iteration count __times dou-
bles with each cycle until the total elapsed CPU time, measured using cputime(),
which extracts CPU time using rusage, exceeds 250 milliseconds. Within this loop,
func is executed repeatedly for the current iteration count, and once the threshold is
met, the macro computes the average CPU time per execution by dividing the total
elapsed time by the number of iterations. Note, not just cputime(), for verification
across all the timing measurement techniques, we replaced cputime() with RDTSC-
and Timespec-based measurement functions. But for reporting the stats, we used to
cputime().

Based on the computed average time using TIME, we have again resorted to
GMPbench with the following code to determine a suitable iteration count and com-
pute the performance metric:
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Example A.1.4.2.

TIME(t, func(z, x, y));

niter = 1 + (unsigned long)(1e4 / t);

t0 = cputime();
for (i = niter; i > 0; i--)
{

func(z, x, y);
}
ti = cputime() - t0;

ops_per_sec = 1000.0 * niter / ti;
f = 100.0;
for (decimals = 0;; decimals++)
{

if (ops_per_sec > f)
break;

f = f * 0.1;
}

printf("RESULT: %.*f operations per second\n", decimals, ops_per_sec);

A.2 Code Profiling

A.2.1 PERF

PERF [Con24] is a powerful performance analysis tool in Linux, widely used for pro-
filing applications and understanding performance metrics. It can capture a range of
data points, such as CPU cycles, user/kernel instructions, page faults, cache misses,
and more.

In our work, we have leveraged PERF to gain deep insights into how our code be-
haves under different conditions. Instead of relying solely on the usual perf through
the shell, we’re also using the perf_event_open [man24b] system call to measure
performance at a more granular level. This allows us to target specific code frag-
ments and gather precise performance data, offering more flexibility and control
over the profiling process.

The per f _event_open system call does not reliably reflect the L1D read counts
for AVX instructions, possibly due to the separation of AVX execution units from
the main ALU. However, it accurately tracks L1D misses, likely because miss events
are handled through the main CPU pipeline. Given that both the baseline and vec-
torized implementations operate on similar data elements with comparable access
patterns, we use the L1D read counts from the baseline as a reference for analysis.
Additionally, to account for performance measurement overhead, we subtract the
perf overhead by measuring the stats over an empty function call.
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Appendix B

Miscellaneous Optimization
Techniques

B.1 Auto-Vectorization

Vectorization in a C/C++ program can be explicit or implicit. For explicit vector-
ization, we use SIMD intrinsic calls like AVX-512 intrinsics [Int24] directly in the
code. Alternatively, implicit vectorization [Jel] of loops avoids manual intrinsics by
setting up the code for compilers like GCC or ICX to auto-vectorize with the right
flags. This needs three things: proper compiler flags, aligned data allocation, and
alignment hints to the compiler. In GCC, auto-vectorization requires −O2 or higher
flags. By default, it uses 128-bit vectors; for 256-bit or 512-bit vectorization, add
−mavx2 or −mavx512 f flags. Since AVX-512 includes multiple flag variants, each
must be specified separately in GCC. However, in some cases, auto-vectorized code
by the compiler may not be as efficient as a programmer can achieve using careful
explicit vectorization, but it can still be a helpful feature for many users.

B.2 Aligned Memory Allocation for Vectorization

Intel documentation [Man22] recommends 16-byte alignment for SSE, 32-byte for
AVX and AVX2, and 64-byte for AVX-512. It suggests using _mm_malloc(ptr,<
alignment− size >) and _mm_ f ree(ptr) for memory management. Afterwards, us-
ing the __assume_aligned attribute to inform the compiler of data alignment. Mis-
aligned data may prevent vectorization. To verify vectorization in GCC, use the
− f tree− vectorizer− verbose = 2 flag for detailed output or the − f opt− in f o− vec
flag for a vectorization report.

Aligned allocation is key for performance in both implicit and explicit vector-
ization. With AVX-512F aligned loads or stores, the starting memory address must
be 64-byte aligned to avoid segmentation faults. If not properly aligned, unaligned
loads/stores can be used, but this may degrade performance.

B.3 Transparent Huge Pages (THP)

Huge pages reduce TLB misses with sizes larger than the default 4 KiB. Linux trans-
parent huge page [com] (THP) support lets the kernel automatically promote reg-
ular memory pages into huge pages. Linux’s Transparent Huge Page (THP) sup-
port [com] lets the kernel promote regular pages to huge pages automatically. We
can advise the kernel to allocate 2 MiB or 1 GiB huge pages (depending on system
support) using madvise calls from C/C++ code. However, after allocation, the kernel
won’t recognize it as a THP until the memory is initialized or accessed. The basic
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idea of using THP for this work would be that if we were to work with a big work-
load of large numbers requiring a lot of memory, we may try to pre-allocate a large
chunk using THP, which can help avoid frequent page faults and TLB misses within
the memory segment. Some tutorials and the effectiveness of THP have been listed
on this blogpost [Rig20].

B.4 Branching Optimization

We can avoid i f or conditional branching inside loops since it slows execution a
lot. When some branches rarely occur, we can hint the compiler with LIKELY and
UNLIKELY macros, using GCC’s __builtin_expect [Teaa], to improve branch pre-
diction. These macros provide a hint to the compiler about the expected outcome
of a condition, allowing it to optimize instruction ordering for better performance.
For example, consider a scenario where a function call happens only in rare error
conditions:

Example B.4.0.1.

/* Define macros for branch prediction */
#define LIKELY(x) __builtin_expect(!!(x), 1) // Condition is usually true
#define UNLIKELY(x) __builtin_expect(!!(x), 0) // Condition is rarely true

/* Process array elements with rare error logging */
void process_array(int* arr, int size) {

for (int i = 0; i < size; i++) {
if (UNLIKELY(arr[i] < 0)) {

/* Rare function call of log_error */
log_error("Negative value detected", arr[i]);

}
arr[i] = arr[i] * 2; // Normal case: double the value

}
}


