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Abstract

This thesis report comprises two chapters. The first chapter presents the implementation

and experimental results of a Genetic Algorithm with Local Refinement for the Maximal

Covering Location Problem on SJC-datasets (SJC324, SJC402, SJC500, SJC708, and

SJC818). The proposed method matches the best-known solutions for 60 out of 82

instances, demonstrating its promising performance. The second chapter proposes an

Artificial Bee Colony algorithm with Regional Facility Enhancement for the solution of

NP-Hard Probabilistic Maximal Covering Location-Allocation Problem (PMCLAP). The

proposed method aims to improve the solution quality and convergence speed by applying

a regional facility enhancement procedure. The PMCLAP problem also involves allocating

customers to suitable facilities to achieve optimality, and several strategies are suggested

for this sub-problem. The effectiveness and efficiency of the proposed method are discussed

and illustrated by solving several instances on three data-sets of different sizes: 30-node,

324-node, and 818-node networks with waiting queue size constraint and waiting time

constraint. The proposed heuristic method shows promising performance on the 30 &

818-Node data-sets, where it matches the optimal solutions obtained by CPLEX in most

cases. However, on the 324-Node data-set, there is a noticeable gap between the heuristic

and optimal solutions. Overall, the heuristic method attains 50% of the optimal solutions

achieved by CPLEX, with an average gap of 0.09% for the standard instances tested.

The quality of the heuristic solutions depends largely on the customer allocation strategy.

Future research will focus on developing improved allocation strategies to enhance the

performance of the heuristic method.
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Chapter 1

Implementation of Maximal Covering Lo-

cation Problem using Genetic Algorithm

with Local Refinement
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1.1 Background

The Maximal Covering Location Problem (MCLP) is a extensively researched issue in

the field of facility location analysis, first proposed by Church and ReVelle [1974].The

objective of this problem is to identify the best location of facilities in a specific area that

can serve a collection of demand points with the highest coverage. In simpler terms, we

can explain it like: we are directed to open k facilities among N cities having respective

population such that maximum possible population is served.

The origins of the MCLP can be traced back to the 1960s when researchers began

exploring location-allocation problems. Since then, it has gained considerable attention

due to its relevance in practical applications such as facility location planning, service

network design, and resource allocation.

In the MCLP, each facility is assumed to have a predetermined coverage range or

service radius within which it can serve the demand points. The aim is to choose a

set of possible candidate location for facilities among the demand points that can cover

the maximum number of demand points with the condition that every demand point

has a minimum of one facility serving it. The problem exhibits complexity owing to

various factors, namely the location of demand points, the coverage area of facilities, and

potential limitations on resources or capacity. Real-world instances of the MCLP often

involve large-scale geographic regions with numerous demand points, resulting in high

computational difficulty for searching precise solutions in feasible time periods.

For addressing the MCLP, researchers have proposed diverse mathematical models,

optimization algorithms, and heuristic approaches. These methods aim to find near-

optimal solutions by striking a balance between computational efficiency and solution

quality. Meta-heuristic algorithms like particle swarm optimization, simulated annealing,

and genetic algorithms have shown promise in solving larger instances of the problem.

Given its practical significance in emergency service planning, healthcare facility location,

and supply chain management, the MCLP continues to attract research attention. The

ultimate goal is to develop innovative algorithms and solution approaches that can

effectively handle the complexities of the problem and provide decision-makers with

reliable tools for making optimal facility location decisions.
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1.2 Problem Definition

As defined by Church and ReVelle [1974], assume a set P consisting m points in a two-

dimensional plane, denoting cities or customers. Every point pj ∈ P , where j ranges

between {1, 2, 3, ..., m}, having non-negative population or demand, indicating the weight

of the corresponding point.

Each facility’s area of service, or area of coverage, is circular in nature and has a

constant radius r, indicating the service distance. The center of the circle with service

radius r denotes the location of the facility. We are given k number of facilities to be

opened, where k ranges from 1 to m, and the set {c1, c2, ..., ck} which represents the

centers for the k facilities. Notably, the potential locations for every facility are limited

within customers’ locations, implying ci ∈ P for i ranging from 1 to k.

Iff d(pj, ci), the euclidean distance between pj and ci, is at most rA customer or

demand point pj ∈ P is considered to be in the coverage of a facility circle having center

at ci, where i ranges from 1 to k. In-case a customer or demand point is within the service

radius of multiple facilities then any of the feasible facility can serve the customer. But, a

customer can be served by at-most one facility. Maximizing the total sum of demands of

the customers within the coverage by finding the possible candidate locations of k facilities

is the objective of MCLP.

Consider the set P = {p1, p2, ..., pm} as the set of customers, the possible candidate

facility location set I = {c1, c2, ..., cm}, and the demand of customer pj denoted by fj.

We consider r as the service distance or radius of for all the candidate facilities. And we

assume k is the number of facilities to be opened. If the customer pj ∈ P can be served

by a facility located at ci ∈ I we set aij = 1, else we set aij = 0. Additionally, if customer

pj is served we set xj = 1 , else we set xj = 0; yi = 1 infers a facility to be located at site

ci ∈ I, else yiis0.

We consider the following objective function of MCLP as defined in Atta et al. [2018]

v(MCLP), is as follows:

v(MCLP) = max
pj∈P

fjxj (1)
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subject to the constraints:

∑
ci∈I

aijyi − xj ≥ 0, pj ∈ P (2)

∑
ci∈I

yi = k (3)

xj ∈ {0, 1}, pj ∈ P (4)

yi ∈ {0, 1}, ci ∈ I (5)

The total covered demand is represented by the objective function (1) in the formulation,

and the aim is to achieve highest possible total covered demand. A demand point pj ∈ P

is covered or served iff there exists at least one facility ci ∈ I such that d(pj, ci) ≤ r is

stated by constraint (2). The count of facilities to exactly k is limited by constraint (3).

The binary nature that is either 0 or 1 of the decision variables for the problem is enforced

by constraints (4) and (5).

For this implementation, we assume the customers’ locations as the possible candidate

facility locations. Thus, the sets I and P are similar or comparable for the problem

implemented in this report.

.
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1.3 Procedure of Implementation

For implementing the MCLP using GA with Local Refinement, strategy similar to Atta

et al. [2018] is taken into consideration. The flow of execution of the strategy is depicted

in the flowchart fig. 1.1. In the following subsections, brief description of each step is

Figure 1.1: Flowchart for solving MCLP based on the Genetic Algorithm strategy

provided.
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1.3.1 Encoding of Chromosomes

In genetic algorithm, possible candidate solutions are encoded as strings called as chromo-

somes. For this MCLP problem, chromosomes are made up of string of integer indices

representing the possible candidate facility locations to be opened from the set of customers

P = {p1, p2, p3, ... , pm}, similar strategy to Atta et al. [2018]. Therefore, a chromosome is

an integer string {t1, t2, t3, ..., tk} of length k, where k denotes the count of facilities to be

opened, and every ti ∈ t refers to a customer index where a facility has been opened. Since

the potential facility locations are restricted to the customers themselves, each element ti

corresponds to a customer location. Let us assume some values: m = 324 and k = 10, a

string of chromosome {142, 52, 98, 79, 101, 320, 141, 65, 55, 10} implies that customers p142,

p52, p98, p79, p101, p320, p141, p65, p55, and p10 are selected as possible facility locations to

be opened according to the encoded solution in the chromosome.

1.3.2 Initialization of Population

Random initialization of the initial population, consisting of P chromosomes are done,

where P denotes the size of population. For the initial population, each of the chromosome

is randomly generated by choosing k indices from the set {1, 2, 3, ....,m}. The pseudo-code

implemented in MATLAB is shown in 1.

Algorithm 1 initialize
// Inputs: P, K, m
// Output: population (PxK vector)
// P is the population size
// K is the number of facilities to be opened
// m is the size of customers

1: population = zeros(P, K, 1)
2: for i = 1 to P do
3: population(i, :, 1) = randperm(nrows, K)

1.3.3 Computation of Fitness

The goodness or quality of a encoded chromosome for MCLP is indicated by the fitness.

The fitness computation for MCLP is done as:

∑k
i=1 Demand of customers served by facility i

Total demand of all customers
× 100%
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where, k is the number of facilities opened. And aim is to maximize this fitness value. So,

each chromosome encodes fitness as the coverage of the solution.

1.3.4 Genetic Operators

Selection, crossover and mutation are the three genetic operators involved to create the

population of next generation, Each of the three genetic operators are described in the

following subsections.

Selection

The process of generating a mating pool from the population is called as selection. The

chromosomes that undergo the selection procedure in the mating pool qualify for the

subsequent operation crossover. For this selection procedure, a popular selection strategy

called binary tournament selection Goldberg [1989] is used. The binary tournament

selection strategy used for selection of chromosomes of MCLP is described in the pseudo-

code 2.

Algorithm 2 selection
// Inputs: population, P, K
// Output: mating_pool (PxK vector)

1: mating_pool = zeros(P,K)
2: for i = 1 to P do
3: p1 = randi([1, P], 1)
4: p2 = randi([1, P], 1)
5: if fitness(p1) > fitness(p2) then
6: mating_pool(i,:) = population(p1,:)
7: else
8: mating_pool(i,:) = population(p2,:)

Crossover

Crossover operation is a procedure that entails the transfer or exchange of information

between two parent chromosomes with the aim of producing two offspring chromosome

solutions that are distinct from their progenitors. There are several crossover strategies

in the literature, for our implementation single-point crossover strategy is utilized. The

strategy implemented is shown in the pseudo-code 3.
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Algorithm 3 crossover
// Inputs: mating_pool, P, K
// Output: C (PxK vector)

1: x = 1
2: off1 = zeros(1, K)
3: off2 = zeros(1, K)
4: for i = 1 to (P/2) do
5: r = rand
6: p1 = randi([1, P ], 1)
7: p2 = randi([1, P ], 1)
8: if (r ≤ crossprob) then
9: crosspoint = randi([1, K], 1)

10: for m = 1 to crosspoint do
11: off1(1,m) = M(p1,m)
12: off2(1,m) = M(p2,m)

13: for m = crosspoint+ 1 to K do
14: off1(1,m) = M(p2,m)
15: off2(1,m) = M(p1,m)

16: else
17: for m = 1 to K do
18: off1(1,m) = M(p1,m)
19: off2(1,m) = M(p2,m)

20: C(x, :) = off1(1, :)
21: C(x+ 1, :) = off2(1, :)
22: x = x+ 2
23: off1 = []
24: off2 = []

13



The crossover operation is governed by a fixed crossover probability µc, and it is

performed P/2 times to produce P offspring chromosome solutions. In this implementation,

µc is fixed to 0.9 for all generations.

Mutation

Slight alteration of a single parent chromosome is known as mutation. The mutation

strategy implemented is shown in 4:

Algorithm 4 mutation
// Inputs: C, P, K, m
// m is the number of customers
// Output: updated pool T

1: neighbourSize = m/10
2: // For 10% neighbours
3: T = C
4: for i = 1 to P do
5: for j = 1 to K do
6: r = rand
7: if (r ≤ µm) then
8: neighbour = getClosestNeighbours(C(i, j), neighbourSize)
9: // getClosestNeighbours returns the closest neighbourSize neighbour customer indices

10: // from the facility C(i,j)
11: mutated = randsample(neighbour, 1)
12: T (i, j) = mutated

Initially the µm is set to 0.01 and it is kept unchanged till local refinement procedure

is applied on the population, ensuring mutation process in the early convergence stage

through local improvements does not result in substantial disturbances to the chromosomes.

Once the need for local refinement diminishes, the mutation probability µm can be

appropriately calibrated further and in our implementation it is adjusted to 0.8.

These steps constitute the main procedure of the proposed Genetic Algorithm based

solving approach for Maximal Covering Location Allocation Problem. And the subsequent

sections, further details are discussed for performance elevation of the proposed method.

Local Refinement

Following the mutation procedure, a local refinement process is applied to each of the

solution (chromosome) of the pool. The refinement procedure is carried out in the following

way: Initially clusters of customers are created around facilities. The assignment of each

14



customer pi is based on their proximity to a facility cj. Each facility cj has a cluster

clstj of customers that are assigned to it(Jain et al. [1999]; Mukhopadhyay et al. [2015]).

Updating each facility cj with ct such that,

t = argmin
pi∈clstj

∑
pl∈clstj

fld(pi, pl). (1.1)

where the chromosome encodes each facility cj

Therefore, the point with the lowest weighted sum of distances to other points in its

cluster is chosen as the new location for each facility. By doing this, the facility locations

become more aligned with points that are centrally located and have more demand, which

results in a faster increase in the total possible coverage. This refinement helps the

algorithm converge faster when it is applied in the initial stages. Moreover, it is significant

to mention that this is true for most of the cases, the farther the customer and facility

are from each other, the worse the service quality becomes. Hence, this improvement

method also tries to offer superior service to customers close to the facility than to those

who are more distant. If there is no change in the best fitness function for 50 consecutive

generations, the local refinement procedure is discontinued to allow free evolution of the

chromosomes.

Elitism

Elitism preserves the best quality chromosome obtained till date. This is a way to protect

quality solutions from being lost due to the stochastic nature of selection, crossover, and

mutation genetic operators . The parent population and child populations for a given

generation are combined, and then P solutions having highest fitness are chosen to proceed

for the next generation.

Termination Criterion

The algorithm iterates across generations the process of computing fitness, selecting,

crossing over, mutating, refining locally, and applying elitism. The local refinement of

chromosomes keeps going until 50 generations have the same best fitness value. Then, the

local refinement is discontinued, and the chromosomes evolve freely. The loop keeps going

until no improvement in the best fitness value is seen for the last 100 generations. The

15



best solution, corresponding to the highest coverage value, is what the GA outputs.
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1.4 Experimental Results

For assessing the quality of the Genetic Algorithm with local refinement procedure, this

section provides the experimental results and details. The implementation was coded in

Matlab™ version: R2021a. Computational experiments of the data-set used were done on

machines configured with an Intel i5™ processor clocked at 2.5 GHz frequency needing

less than 500 Megabytes of RAM memory. Tables 1.1 - 1.5 shows the experimental

results for various data-sets and their instances. Experiment incorporates five data-sets:

SJC324, SJC402, SJC500, SJC708, and SJC818. These experimental result achieved by

the implementation looks promising.

Table 1.1: Experimental Results with GA with refinement-based solving for SJC324 MCLP

n p S Cov.(%) Gap (%) Time(s)

324 1 800 44.94 0 1.64
324 2 800 72.33 0 2.47
324 3 800 95.49 0 3.43
324 4 800 99.62 0 5.66
324 5 800 100 0 2.95
324 1 1200 81.73 0 4.62
324 2 1200 95.08 0 4.18
324 3 1200 100 0 3.17
324 1 1600 99.76 0 5.65
324 2 1600 100 0 3.77

Table 1.2: Experimental Results with GA with refinement-based solving for SJC402 MCLP

n p S Cov.(%) Gap (%) Time(s)

402 1 800 41.01 0 1.58
402 2 800 70.94 0 2.71
402 3 800 91.9 0 4.65
402 4 800 97.85 0.11 5.51
402 5 800 99.91 0 4.89
402 6 800 100 0 4.03
402 1 1200 66.36 0 4.16
402 2 1200 92.79 0 4.95
402 3 1200 100 0 4.53
402 1 1600 96.58 0 7.37
402 2 1600 100 0 5.53
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Table 1.3: Experimental Results with GA with refinement-based solving for SJC500 MCLP

n p S Cov.(%) Gap (%) Time(s)

500 1 800 40.31 0 1.84
500 2 800 63.2 0 3.41
500 3 800 79.82 0 4.81
500 4 800 90.18 0.11 8.03
500 5 800 95.7 0 15.83
500 6 800 99.08 0 17.20
500 7 800 99.92 0 11.87
500 8 800 99.97 0.03 5.426376
500 1 1200 54.43 0 3.20
500 2 1200 91.69 0 6.52
500 3 1200 98.41 0 7.05
500 1 1600 75.12 0 6.40
500 2 1600 99.8 0 7.74
500 3 1600 100 0 6.14

Table 1.4: Experimental Results with GA with refinement-based solving for SJC708 MCLP

n p S Cov.(%) Gap (%) Time(s)

708 1 800 34.69 0 2.58
708 2 800 55 0 4.65
708 3 800 71.4 0 6.29
708 4 800 84.07 0 17.57
708 5 800 88.81 0 35.01
708 6 800 92.69 0.33 30.68
708 7 800 94.75 0.95 24.42
708 8 800 97.83 0 26.25
708 9 800 98.5 0.6 14.48
708 10 800 98.95 1.4 20.93
708 11 800 100 0 14.828
708 1 1200 48 0 4.52
708 2 1200 84.23 0 9.10
708 3 1200 92.68 0 12.58
708 4 1200 98.73 0 27.78
708 5 1200 99.66 0.13 20.04
708 6 1200 100 0 10.31
708 1 1600 69.56 0 9.41
708 2 1600 96.59 0 18.10
708 3 1600 98.59 0.15 10.36
708 4 1600 100 0 8.66
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Table 1.5: Experimental Results with GA with refinement-based solving for SJC818 MCLP

n p S Cov. (%) Gap (%) Time (s)

818 1 800 28.77 0 2.67
818 2 800 45.62 0 10.84
818 3 800 60.02 0 15.53
818 4 800 73.10 0.36 7.64
818 5 800 83.21 0.89 21.21
818 6 800 87.49 1.33 24.52
818 7 800 90.19 2.15 24.96
818 8 800 94.06 1.29 35.48
818 9 800 96.59 0.77 37.87
818 10 800 97.67 0.88 37.47
818 11 800 98.93 0.81 29.14
818 12 800 99.14 0.67 26.68
818 13 800 99.98 0 34.59
818 14 800 100 0 15.56
818 1 1200 39.81 0 7.98
818 2 1200 69.56 0 16.68
818 3 1200 86.43 0 23
818 4 1200 92.46 0.21 27.09
818 5 1200 97.35 0.40 26.63
818 6 1200 99.59 0.30 29.47
818 7 1200 99.96 0.04 11.74
818 1 1600 57.69 0 10.12
818 2 1600 84.5 0 15.12
818 3 1600 94.87 0 21.76
818 4 1600 98.95 0 22.39
818 5 1600 100 0 10.91

1.5 Conclusion

In conclusion, this study implemented the Maximal Coverage Location Problem using

Genetic Algorithm with local refinement strategy and showed the experimental results

achieved by the implementation. It shows promising results for 60 out of 82 instances

for the SJC324, SJC402, SJC708 and SJC818 data-sets, in terms of both achieving near-

optimal benchmark results and computational time. However, for some instances the

benchmark results were missed by a small margin compared to the benchmark result,

however it beats some of the existing models in terms of computational time by a multi-fold

times. Future work will focus on making appropriate changes and improvements to achieve

faster computational time and also giving overview of other evolutionary strategies to
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solve this problem. Overall, this study provides insights into implementing the MCLP

problem and opens up avenues for further research in this area.
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Chapter 2

Solving Probabilistic Maximal Covering

Location Allocation Problem using Artifi-

cial Bee Colony Algorithm with Regional

Facility Enhancement
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2.1 Introduction

Introduced by Marianov and Serra [1998], the probabilistic maximal covering location-

allocation problem (PMCLAP) is a NP-hard optimization problem in the area of operations

research which is a modified and constraints imposed on the maximal covering location

problem (MCLP) proposed by Church and ReVelle [1974] to achieve minimum service

quality. The problem can be practically applied into enormous use-cases for example

locating places for first-aid centers, hospitals, fire stations, locating electric vehicle (EV)

charging stations, stores of fast food chains, placing ATMs, etc; and even when we need

to open K facilities in a country of N cities having respective population to serve while

maintaining minimum service quality at each facility.

In recent years, swarm intelligence-based algorithms have shown great potential in

solving optimization problems. One of such popular swarm intelligence-based algorithms

is the Artificial Bee Colony algorithm (ABC) introduced by Karaboga et al. [2005].

As the PMCLAP problem is also an optimization problem, we have proposed to use

the ABC algorithm to solve PMCLAP problem, which incorporates proposed regional

facility enhancement strategy for attaining better results with quicker convergence. The

swarm-based optimization algorithm Artificial Bee Colony (ABC) is inspired by honeybees

foraging behavior. Basically the algorithm is made up of three types of bees: employed bees,

onlooker bees, and scout bees. Employed bees perform local search around their current

solutions and communicate their findings to onlooker bees, who use this information to

select promising solutions. Scout bees explore the search space for new solutions. These

three bees procedure is considered as one cycle of iteration. An iteration refers to one

complete cycle of the algorithm, which involves generating and evaluating candidate

solutions, selecting the best solutions, and updating the search process based on the

knowledge gathered from the preceding epochs. The number of iterations in ABC is

typically specified as a stopping criterion and can be adjusted based on the problem

complexity and required solution accuracy. Algorithm 5 shows the basic process of the

ABC Algorithm proposed by Karaboga [2010], and this can also be found in Atta et al.

[2022].

ABC algorithms are known for solving various NP-hard problems with near-global

optimal result, but they can have a high computation time. Local improvement strategies
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Algorithm 5 Basic ABC
1: for i = 1 to N do
2: Randomly initialize the solution vector Xi;
3: Evaluate the nectar of each solution Xi;
4: Ci ← 0; // abandonment counter
5: while stopping criterion is not met do

// Employed bees phase
6: for i = 1 to N do
7: Create a new solution vector Yi from the employed bee Xi using eq (2.9);
8: Compute the nectar of Yi;
9: if f(Yi) ≥ f(Xi) then

10: Xi ← Yi;
11: else
12: Ci ← Ci + 1; // update abandonment counter

// Onlooker bees phase
13: for j = 1 to N do
14: Based on selection probabilities using roulette wheel selection, select a solution Xi ;
15: Generate a new solution vector Yi from the employed bee Xi using eq. (2.9);
16: Compute the nectar of Yi;
17: if f(Yi) ≥ f(Xi) then
18: Xi ← Yi;
19: else

Ci ← Ci + 1; // update abandonment counter
// Scout bees phase

20: for i = 1 to N do
21: if Ci > L then
22: Generate a new solution vector Yi randomly;
23: Xi ← Yi;
24: Compute the nectar of Yi;
25: Ci ← 0;
26: Update the best solution Xg found so far;
27: return Xg
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can be incorporated into the ABC algorithm to improve its performance. In this approach,

candidate solutions are encoded for probable facility location indices, and the nectar or

objective function is calculated as the sum of demand or population served. A regional

facility enhancement strategy is considered to fine-tune food sources of the solution vectors

and improve convergence speed. Comparison between the proposed ABC-algorithm

technique with regional facility enhancement and the results achieved by the ANLS

[Pereira et al., 2015], MS Heuristic [Marianov and Serra, 1998], CS (Clustering Search)

[de Assis Corrêa et al., 2007], GRASP [Feo and Resende, 1995], CPLEX [Pereira et al.,

2015] model are done with respect to computational time and total demand served.

Experimental results show that the suggested technique outperforms the MS Heuristic

in most cases in terms of total demand served; outperforms the GRASP in some of the

cases in terms of total demand served. While the result achieved by ABC with Regional

Facility Enhancement is at par with ANLS and CPLEX is of majority of the cases for 30

& 818-node network, but for 818-node data-sets it beats them in terms of computational

time.

The subsequent sections of the chapter are organized as follows: section 2.2 discusses

the similar works; mathematical formulation of PMCLAP is described in section 2.3;

section 2.4 briefs the suggested ABC technique in detail; the experimental results are

reported and discussed in the section 2.5; and at the end report is concluded in section

2.6 .
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2.2 Related Works

From the introduction of PMCLAP by Marianov and Serra [1998], various similar versions

have been introduced in probabilistic location allocation literature (Marianov and Serra

[1998];de Assis Corrêa et al. [2007];de Assis Corrêa et al. [2009];Pereira et al. [2015]).

Opening k facilities among N cities is considered in the MCLP introduced by Church and

ReVelle [1974]. But this basic MCLP problem doesn’t take into account the congestion

issues or capacities issue. The PMCLAP was introduced by Marianov and Serra [1998],

an modified version of the MCLP imposing least quality on the level of service, which

assumes that Poisson distribution is followed by the clients in arrival to the facilities. By

counting the the total number of population waiting for service, or by taking into account

the waiting for the service, demand at a facility is calculated. In the current work, we are

considering the model of PMCLAP introduced by Marianov and Serra [1998]. Several

researchers have introduced various strategies to solve the PMCLAP includes Hybrid

Heuristics, which merges both the Genetic Algorithm (GA) and the Simulated Annealing

(SA) methods like de Assis Corrêa et al. [2007]. Also de Assis Corrêa et al. [2009] proposed

a decomposition approach for the PMCLAP. The proposed method decomposes the

original problem into a set of subproblems, each of which is then solved using a GA-based

algorithm. By combining the solutions of the sub-problems, the solution of the original

problem is achieved.The authors of Pereira et al. [2015] introduced a hybrid technique for

solving the probabilistic maximal covering location-allocation problem (PMCLAP) which

merges simulated annealing (SA) and a genetic algorithm (GA) to enhance the quality of

the solutions. The SA method is used to generate initial solutions, while the GA method

is used to refine the solutions obtained by SA. The proposed hybrid method was run on

several existing benchmark instance datasets and compared with other existing methods,

and the computational-results showed that the hybrid method beats the several existing

methods in-terms of quality of solution and computational time. introduced by Huang

et al. [2022] introduced a particle swarm-optimization (PSO) algorithm for solving the

PMCLAP. The proposed method uses a pool of particles for finding the optimal solution.

Based on the highest quality solution found so far it updates the velocity and the position

of the particles.
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2.3 Problem Definition

As proposed by Marianov and Serra [1998], a graph consisting of n nodes in set N is

considered for the problem definition where each of the node is assigned with a demand di.

A service radius r is assigned for all the candidate facilities. The nodes within r units of

distance from node i, i.e., the set of location candidates j that can serve customer/client i

is considered in the subset Ni. fi is the contribution in terms of congestion of customer i

to the system congestion and is computed as a fraction of the customer’s demand. An

assumption is made that customers’ arrival to the facilities will be followed according to a

Poisson distribution with parameter rate µ. The minimum probability of at most

• a waiting queue with b clients, or;

• a waiting time of τ minutes

is defined by the parameter α. For modeling the PMCLAP, two sets of binary variables

are defined: one for location and the other for decisions of allocation. Variables yj are set

to 1 if location j ∈ N is opened, and variables xij are set to 1 if customer i is served by

facility j where i, j ∈ N . The mathematical formulation of the problem is given below,

defined in the work Pereira et al. [2015] as follows:

maximize
∑
i∈N

∑
j∈Ni

dixij (2.1)

subject to ∑
j∈Ni

xij ≤ 1, i ∈ N (2.2)

∑
i∈N

yj = p (2.3)

xij ≤ yj, i ∈ N, j ∈ N (2.4)∑
i∈N

fixij ≤ µ b+2
√
1− α j ∈ N (2.5)

∑
i∈N

fixij ≤ µ+
1

τ
ln(1− α), j ∈ N (2.6)

yj, xij ∈ {0, 1}, i ∈ N, j ∈ N (2.7)
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The optimization problem aims to maximize the total demand served, with constraints

ensuring the allocation and location of facilities. Specifically, the objective function (2.1)

maximizes the total demand/population served, while constraints (2.2) guarantee that

at most one facility serves each client, and constraint (2.3) determines the counts of

facilities to be opened. Linking the location to allocation variables, by allowing customers

to be allocated to an opened facility, is achieved by Constraint (2.4). Constraint (2.5)

ensures that facility j has fewer than b clients/customers in the waiting queue with at

least probability α, while constraint (2.6) ensures that the waiting time for service at

facility j is at most τ minutes with a probability of at least α. The binary nature of the

variables is enforced by constraints (2.7). It is worth noting that xij is set to zero for all

j /∈ Ni.

Constraints (2.5) and (2.6) account for the probabilistic characteristics of the problem.

Following the approach of Marianov and Serra [1998], an M/M/1/∞/FIFO queueing

system is taken, where requests of service occur according to a Poisson distribution with

intensity fi. As customers arrive at a facility j from different demand nodes, the request

for service at this facility is the sum of several Poisson processes with an intensity of λj,

calculated as:

λj =
∑
i∈N

fixij (2.8)
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2.4 Proposed ABC for PMCLAP

The proposed Artificial Bee Colony based solution for the foregoing PMCLAP is described

in this section. Fig. 2.1 demonstrates the overall flow of execution of the proposed

ABC-based solution of PMCLAP . And, in the following subsections, each step of the

proposed procedure is described in detail.

Figure 2.1: Flowchart demonstrating the proposed ABC-based procedure for solving
PMCLAP
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2.4.1 Solution encoding

In the ABC algorithm, solutions to the optimization problem are encoded as a string

of indices (integer) in a similar way to the chromosome encoding in genetic algorithms

Atta et al. [2018]. A set of potential candidate locations with k number of facilities is

chosen from the set of m customers P = {p1, p2, ..., pm} representing a possible solution

with k facilities. Therefore, a food source encodes an integer string {t1, t2, ..., tk} having

length k representing the indices of the k customers selected as the facilities from the

pool of customers. Each element, pi ∈ P for i={1, 2, ..., k}, since the potential k facilities

locations are limited to the locations of the customers themselves.

2.4.2 Solution Vector (Food Sources) initialization

The initial colony of the bees comprises of P solutions where P is a user-defined parameter

called solution vector or colony size. Selecting k random indices from the set {1,2,...,m}

each food source of the initial colony is created. Here, we set P as 20, chosen experimentally.

2.4.3 Objective function computation

Objective function or nectar of a solution/food source represents the quality or goodness of

the food source embedded within it with respect to PMCLAP. The objective of PMCLAP

is to maximize the coverage (i.e., the total demands of the customers covered by some

facilities satisfying at least the minimum service quality). Hence coverage of the solution

encoded in a food source is considered as the objective function of the food source, as

shown in Eq. 2.1. The allocation strategy of the PMCLAP ensures that the nectar

collection from food sources is subject to the constraints of distance and congestion, thus

avoiding invalid solutions that would violate these conditions. The objective function is

to be maximized.

2.4.4 Allocation of customers

Multiple customers may be available within the service radius of a particular facility,

and choosing the appropriate customers are crucial for achieving an optimal solution.

The allocation strategy of the PMCLAP ensures that the nectar collection from food
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sources is subject to the constraints of distance and congestion, thus avoiding invalid

solutions that would violate these conditions. Several allocation strategies have been

proposed by researchers, including hybrid approaches [de Assis Corrêa et al., 2007]. To

achieve faster customer allocation, we employed three strategies interchangeably to obtain

better experimental results: allocating the customer to the least congested feasible facility

[de Assis Corrêa et al., 2009], allocating the customers with the maximum weighted

demand to the facilities (proposed strategy), and allocating the customer to the random

feasible facility. In the initial 50 epochs/iterations of the study, all three strategies

for the computation of nectar in food sources are simultaneously employed, and the

strategy yielding the highest nectar value is selected. Subsequently, in the remaining

iterations/epochs until the termination criterion is satisfied, the computation of nectar

follows a roulette selection approach based on the frequency of each strategy being chosen

during the previous iterations. In our research investigation on the data-sets, we have

observed that the time allocation strategy predominantly applied was focused on the least

congested facility, accounting for 60 percent of the occurrences. Additionally, a random

allocation approach for assigning feasible facilities to customers was utilized in 10 percent

of the cases, while the remaining 30 percent of the instances involved allocation based on

demand/distance factors. All the three strategies have been briefly shown in algorithms 6,

7, 8.

2.4.5 Swarm-phases in ABC Algorithm

Employed Bees

As Karaboga [2010] mentioned, employed bees looks for fresh food sources with more

nectar within the neighbourhood of the food source in their colony. They find a neighbour

fresh food source and then compute its quality of the nectar for which greedy strategy

is used. For each food source in the colony, one random neighbour is chosen and if the

chosen neighbour has more nectar then it is taken into food sources otherwise we go with

the original food source.

Finding of fresh food source can be done with eq.2.9

Y⃗i = X⃗i + ϕ(X⃗i − X⃗k) (2.9)
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Algorithm 6 GET-LEAST-CONGESTED-FACILITY
// Inputs: customer, solutionVector, congestionVector
// Outputs: facilityNumber, congestionVector, flag
// customer denotes the customer index we’re trying to allocate a feasible facility
// solutionVector contains the indices of opened facilities
// congestionVector contains the congestion data of respective facilities so far accumulated for
serving customers
// Intialize an empty vector availableFacility
// For constraint 5 For constraint 5 x← µ · ((1− α)

1
b+2 )

// For constraint 6 x← µ+
(
log(1−α)

τ

)
// K is the number of facilities opened
1: flag← false
2: f ← 0.01 · demand(customer)
3: min← −1
4: facilityNumber← −1
5: availableFacility← ∅
6: for i = 1 to K do
7: if distance(solution(i), customer) ≤ r and (congestionVector(i) + f) ≤ x then
8: min← congestionVector(i)
9: facilityNumber← i

10: availableFacility(i)← 1

11: if min ̸= −1 then
12: for i = 1 to K do
13: if availableFacility(i) = 1 and min > congestionVector(i) then
14: min← congestionVector(i)
15: facilityNumber← i

16: if facilityNumber ̸= −1 then
17: congestionVector(i)← congestionVector(i) + f
18: flag← true
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Algorithm 7 GET-MAX-WEIGHTED-CUSTOMER
// Inputs: facilityNumber, congestionVector
// Outputs: customer, congestionVector
// customer denotes the customer index we’re trying to allocate to facilityNumber
// solutionVector contains the indices of opened facilities
// congestionVector contains the congestion data of respective facilities so far accumulated for
serving customers
// Intialize an empty vector availableFacility
// For constraint 5 For constraint 5 x← µ · ((1− α)

1
b+2 )

// For constraint 6 x← µ+
(
log(1−α)

τ

)
// K is the number of facilities opened
1: val← 0
2: weightedMatrix← zeros(1,m)
3: for i = 1 to m do
4: f ← 0.01 · demand(i)
5: congestionCheck← (congestionVector(facilityNo) + f) ≤ x
6: distanceCheck← distance(facilityNo, i) ≤ r
7: if notAllocated(customer) and distanceCheck and congestionCheck then
8: weightedMatrix(1, i)← demand(i)

distance(facilityNo,i)

9: customer← getMaxIndex(weightedMatrix)
10: congestionVector← congestionVector(facilityNo) + f

Algorithm 8 GET-RANDOM-FACILITY
// Inputs: customer, solutionVector, congestionVector
// Outputs: facilityNumber, congestionVector, flag
// customer denotes the customer index we’re trying to allocate a feasible facility
// solutionVector contains the indices of opened facilities
// congestionVector contains the congestion data of respective facilities so far accumulated for
serving customers
// Intialize an empty vector availableFacility
// For constraint 5 For constraint 5 x← µ · ((1− α)

1
b+2 )

// For constraint 6 x← µ+
(
log(1−α)

τ

)
// K is the number of facilities opened
1: flag ← false
2: f ← 0.01 · demand(customer)
3: j ← 1
4: for i = 1 to K do
5: distanceCheck← distance(solution(i),customer) ≤ r
6: congestionCheck← (congestionVector(i) + f) ≤ x
7: if distanceCheck and congestionCheck then
8: availableFacility(end+1)← i
9: j ← j + 1

10: flag ← true
11: if flag then
12: randIndex← genRandomIndex(availableFacility)
13: facilityNo← availableFacility(randIndex)
14: y← congestionVector(facilityNo) + f
15: congestionVector(facilityNo)← y
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Here, X⃗i represents the ith food source and P is the colony size. The number of employed

bees and the onlooker bees are equal to the colony size (P ), k is an index randomly chosen

from {1, . . . , P} and k ̸= i.The coefficient ϕ is randomly generated integer from [−1, 1]. In

case, the solution generated by eq. 2.9, Y⃗i is having less nectar than X⃗i, an abandonment

counter Ci is increased by one.

Onlooker Bees

Th onlooker bees of the Artificial Bee Colony Algorithm choose a food source based on

the solutions supplied by employed bees, according to their probability [Karaboga, 2010].

This may be done with the eq. (2.10.

pi =
fiti∑P
j=1 fitj

(2.10)

, where pi is the probability of ith solution of the colony and fiti denotes the nectar of

solution i. Onlooker bees choose solutions X⃗i based on the probabilities of the solution

through roulette wheel selection. And new solution Y⃗i, within the neighbourhood of X⃗i,

can be generated using the eq. (2.9). Greedy strategy is applied between X⃗i and Y⃗i and

richer source having higher nectar is chosen, leading to positive feedback behaviour. In

case, the solution generated by eq. 2.9, Y⃗i is having less nectar than X⃗i, an abandonment

counter Ci is increased by one.

Scout Bees

The scouts in the ABC algorithm refer to the unemployed bees who chooses their food

sources randomly after an abandonment criteria [Karaboga, 2010]. If an employed bee’s

solution cannot be improved through a predetermined number of trials, which is specified

by the user and referred to as the "limit" or "abandonment criteria", here taken as L, the

employed bee becomes a scout and abandons its solution. In this problem, we set L as

⌊0.6 ·P · k⌋ similar to Atta et al. [2022], where P is the colony size and k is the number of

facilities to be opened. The abandoned solution is then randomly searched by the scout to

find a new solution. Therefore, poor sources, whether initially or due to exploitation, are

abandoned, which creates a negative feedback behavior to balance the positive feedback.
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Regional Facility Enhancement

After the scout bees phase, each facility in every food source (solution) of the colony is

enhanced based on its region. This can be done with the proposed strategy mentioned at

9.

Algorithm 9 REGIONAL-FACILITY-ENHANCEMENT
// Inputs: Colony, P, k, N
// Output: Colony
1: neighbourSize ← round(N/10)
2: Updated_Colony ← Colony
3: for i← 1 to P do
4: for j ← 1 to k do
5: Neighbours ← getClosestNeighbours(Colony(i, j), neighbourSize)
6: candidateFacility ← randomly pick one neighbour from Neighbours
7: Updated_Colony(i, j) ← candidateFacility
8: if nectar(Updated_Colony(i, :)) ≥ nectar(Colony(i, :)) then
9: Colony(i, :) ← Updated_Colony(i, :)

For each facility in a solution vector X⃗i, it generates a vector Neighbours containing

its N% closest neighbours, and randomly picks one candidate facility from Neighbours.

Then it replaces the original facility with the new candidate facility chosen in the solution

vector X⃗i. If the newly generated solution vector with the candidate facility has more

nectar, it updates the solution vector with the new solution vector otherwise it keeps it

unchanged. This enhancement procedure is then continued for remaining facilities of the

updated solution vector. This strategy helps to find better solution vector and converge

quickly.

Update best solutions

To prevent loss of promising solutions resulting from the stochastic nature of the ABC

swarm phases, it is necessary to store the best solutions obtained up to the current

generation/iteration. To achieve this, the updated colony currently in the memory is

merged with the previous colony. Then a new colony is formed with best P solutions

having higher nectar from the merged colony, and this is stored in the memory. This

approach ensures that the best food source found thus far is retained. And this strategy

is applied after the ABC phases and also after the enhancement procedure, just to ensure

that quality solutions are not lost.
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Stopping criterion

The iterative process of nectar computation involves employed bees, onlooker bees, scout

bees, regional facility enhancement, and memorization of the best solutions across multiple

generations. The iterative process stops if the best nectar value remains unchanged for

the last hundred iterations. The output of ABC with regional facility enhancement is

determined by the best quality solution, which corresponds to the highest total demand

served.

2.5 Experimental Results

To asses the quality of the ABC with regional facility enhancement procedure, this section

provides the experimental results and details. The algorithm was coded in Matlab™

version: R2021a. Computational experiments of the data-set used were done on machines

equipped with an Intel i5™ processor running at 2.5 GHz frequency needing less than 500

Megabytes of RAM memory.

Similar to the approach in Pereira et al. [2015], benchmark data-sets of instances

consisting of three types: 30 nodes, 324 nodes, and 818 nodes. Each instance was

solved thirty times with the number of facilities ranging from two to fifty. For the

instances with 30 nodes, the service radius (r) was set to 1.5 miles, for instances with 324

nodes r is set to 250 m, and for instances with 818 nodes r is set to 750 m. Marianov

and Serra [1998] proposed the 30-node data-set, while the 324 and 818-node data-sets

were introduced by de Assis Corrêa et al. [2007]. The instances can be found at http:

//www.lac.inpe.br/~lorena/instancias.html.

The tables 2.1, 2.2, and 2.3 provide the names of the instances along with the parameter

values used for each instance. The name of an instance, such as 30_2_0_0_85, indicates

that it incorporates a 30-node problem, where number of facilities opened is 2, the

congestion type is based on the number of customers (0 for queue size, 1 for waiting time),

the congestion parameter is either the number of clients b on the queue or the waiting

time τ in minutes, and the minimum probability α is given as a percentage value. For the

30-node network, the rate parameter µ is fixed at 72, while for the 324 and 818 data-sets,

it is fixed at 96. The parameter fi that appears in formulations (2.1)-(2.7) is calculated as

fdi, where f is 0.01 for the 324- and 818-node networks, and either 0.015 (for queue size
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type constraints) or 0.006 (for waiting time type constraints) for the 30-node network.

It is important to use the same unit format for all the parameter values when dealing

with the waiting time constraint. The parameter µ does not require any conversion, but τ

needs to be adjusted to match the unit as it appears in minutes. This can be done by

calculating 1440/τ and substituting it for τ in the formulation (2.6) (24 hours or 1440

minutes of total distribution space).

Tables 2.1-2.3 display the best and average solutions (if available), computation time,

and standard deviation for the ABC algorithm with local refinement for each instance.

The study found that for the 30 node dataset, the strategy proposed by de Assis Corrêa

et al. [2009] - allocating to the least congested facility - achieved better results with ABC

almost reaching the benchmark. For the 324 and 818 node datasets, allocating according

to the weighted demand strategy led to better results, although neither dataset met the

benchmark. The Gap in % shows the difference in percentage between the obtained

and benchmark results. Although not achieving the benchmark, the ABC algorithm had

significantly faster convergence than ANLS Pereira et al. [2015].

The implementation of the proposed algorithm and all related data can be found here:

https://tinyurl.com/PMCLAP-using-ABC

2.6 Conclusion

In conclusion, this study proposed an approach to solve the Probabilistic Maximal Coverage

Location-Allocation Problem using the Artificial Bee Colony algorithm with regional

facility enhancement strategy. Three allocation sub-problems were solved using different

strategies, resulting in promising results for the 30 node data-set and 818 node data-set,

in terms of both achieving benchmark results and computational time. It achieves the

optimal benchmark results of CPLEX in 50% of time, with an average computational

time of 85.83 seconds. In comparison to non-CPLEX strategies like for the instances

shown in table 2.1-2.3: MS Heuristics which achieves the benchmark results only 2.70%

of the time; GRASP achieves the benchmark results 29.72% time, and CS achieves the

benchmark results 58.10% time. The heuristic method finds optimal solutions for 21 out

of 26 instances of the 30-node data-set with an average gap of 0.10%, for none of the 24

instances of the 324-node data-set with an average gap of 0.17%, and for 16 out of 24
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instances of the 818-node data-set with an average gap of 0.007%. Overall, the heuristic

method attains 50% of the optimal solutions achieved by CPLEX, with an average gap of

0.09% for the standard instances tested. The quality of the heuristic solutions depends

largely on the customer allocation strategy. Future research will focus on developing

improved allocation strategies to enhance the performance of the heuristic method.
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